Motivation

e The ability to adapt control policies to new environments is an important problem in robotics.
e Sample Efficiency Issue The agent needs to learn a good policy within limited interactions.

e Unlike learning in simulated worlds, real-world robot experiments are expensive and time-consuming.

Problem Statement

e Goal To quickly find a policy 7 € II that minimizes an expected cost over trajectory distribution p,

min J (), where J(m) =E, |Y_ ~'c(ss, ar)

mell =0

e This problem can be equivalently written as
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where A, is the advantage function with respect to some fized reference policy 7’

e That is, find a policy 7 that performs better than the reference policy 7" on its own state distribution d,.

Approaches to Policy Learning

Reinforcement Learning (RL)
e Only minimal information about the problem is used.

e While learning does converge to a locally optimal solution, it may converge slowly:.
Imitation Learning (IL)

o We often have access to suboptimal experts (like human experts and heuristic solutions).
e These expert policies can provide more informed policy search directions to speed up learning.

e But IL generally cannot learn a policy that is better than the expert policy.
Hybrid IL+RL

e Various methods have been proposed to combine RL and IL, with promising empirical performance.

e Some of them, however, rely on unrealistic assumptions (e.g. restarting the system at arbitrary states).

e Others are heuristically designed, lacking clear properties.

® LOKI is a hybrid method that can both speed up learning and achieve locally optimal performance.

e [ts design is motivated by the difference in the theoretical properties between RL and IL.

e We show that LOKI has good empirical and theoretical properties.

e Moreover, it is super simple to implement.
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e LOKI splits policy optimization into two phases, with a switching time K that is randomly determined.

after K steps of updates :
> Reinforcement Phase

Imitation Phase

o At step n, the policy is updated by mirror descent with Bregman divergence Dp and step size n,
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® g, is a stochastic approximation of the (partial) derivative of E; £ |A/| with respect to policy .

o [t uses a different reference policy 7" in each phase.

Reinforcement Phase (first-order RL)

e Policy gradient: the current policy m, is the reference policy and

gn = Vo 4ch7T L [Aﬂn] ‘77:7-‘-71 — (V9 ‘Edw) [O] + ﬂdﬂ (V9 4377) [Aﬂn] ‘7‘-:7771 — ﬂdw (V9 417?) [Aﬂn] ‘77:7777,

e With properly chosen R,,, mirror descent with policy gradient covers most model-free RL algorithms.

e Majorization Optimization With small enough step size, it constructs a global upper-bound
approximation of the objective function and guarantees monotonic improvement of policies.
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Imitation Phase (first-order IL)

e Imitation gradient: the expert policy 7 is the reference policy and
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||a — a*]|?) is chosen such that E[¢] > Q(E,[A]), implying
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e Mirror descent with imitation gradient is a general first-order algorithm to online IL.
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o [t solves a surrogate RL problem: minger E; E;|¢]. This surrogate RL problem has a nice property;
called the normalization property: if #* € 11, then there is a 7 € II such that E; E.[¢] < 0 for all 7',

e As a result, this surrogate RL problem can be solved without using the policy gradient:

VoEq Ex(c] = (VoEq,) ] + Eq, (VoEr) [¢] # Eq, (VoEr)[¢
e Imitation gradient can have smaller bias and variance than policy gradient, as a QQ-function
estimate and the likelihood-ratio trick are not required.

¢ Online Optimization Mirror descent with imitation gradient generally leads to on-average
improvement, and it constructs online loss surfaces which provide more global search directions toward
the (suboptimal) expert policy up to e distance.
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Method

First-Order Oracle

Comparison of First-Order Oracles

POLICY GRADIENT (Sutton et al, 2000) E,
DAGGERED (Ross et al., 2011)
AGGREVATED (Sun et al., 2017)

SLOLS (Chang et al., 2015)
THOR (Sun et al., 2018)

D is a distance function in the action space (e.g. ||a — a*||?)
T This is a simplification of what was originally used in (Chang et al., 2015) but it has the same convergence guarantee.

Theoretical Properties

Results

e (Informal) Let N be the total number of iterations of policy update across both phases, and K < N

be randomly selected with probability P(K =

n)

x nf for some 0 < p < N. Then LOKI performs

almost as if it started from the expert policy, despite actually starting from a random policy.

e Because LOKI learns an on-policy value function estimate in the Imitation Phase, the variance of the
policy gradient in the Reinforcement Phase can be reduced.

e Optional batch IL can also be used to initialize the policy before the Imitation Phase.

Empirical Results

e We validated LOKI (implemented with TRPO) using several robotic control experiments in DART

simulation environment and compared

TRPO (RL baseline), DAGGERED (II

® LOKI in general performs closely to Id

e As LOKI uses on-policy estimates, it d
input distributions) like other hybrid approaches.

Pendulum

—200

—4001

= —600]
2
O
- —8001
10001
—1200 |
0 20
Iteration
3D Walker
2000-
i “
15001
- o
=
N
O
X 1000- ﬁ :
-

0 200

400
Iteration

Return

Return

4000

3000

1000+

eal and learns faster than other baselines.

it with several baselines: Ideal (starting RL from the expert),
. baseline), THOR and SLOLS (RL+IL baselines).

oes not suffer from the covariate shift problem (i.e. change of

2D Walker

0

25 50

75

100 125

Iteration

Reacher

150

—200

—300-

—4001 4l
/1"

—500

6001 /¥

—700

—800

g} A
T

o

0

100

200

300

Iteration

400

50

Figure: Learning curves. Shaded regions correspond to ::%—standard deviation.

75 100 125 150 175
Iteration

LOKI

Ideal
THOR
TRPO
DAGGERED
SLOLS



