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Motivation
•The ability to adapt control policies to new environments is an important problem in robotics.
•Sample Efficiency Issue The agent needs to learn a good policy within limited interactions.
•Unlike learning in simulated worlds, real-world robot experiments are expensive and time-consuming.

Problem Statement
•Goal To quickly find a policy π ∈ Π that minimizes an expected cost over trajectory distribution ρπ

min
π∈Π

J(π), where J(π) = Eρπ

∞∑
t=0
γtc(st, at)

 .
•This problem can be equivalently written as

min
π∈Π

Es,t∼dπEa∼π|s[Aπ′(s, a)],

where Aπ′ is the advantage function with respect to some fixed reference policy π′.
•That is, find a policy π that performs better than the reference policy π′ on its own state distribution dπ.

Approaches to Policy Learning

Reinforcement Learning (RL)
•Only minimal information about the problem is used.
•While learning does converge to a locally optimal solution, it may converge slowly.

Imitation Learning (IL)
•We often have access to suboptimal experts (like human experts and heuristic solutions).
•These expert policies can provide more informed policy search directions to speed up learning.
•But IL generally cannot learn a policy that is better than the expert policy.

Hybrid IL+RL
•Various methods have been proposed to combine RL and IL, with promising empirical performance.
• Some of them, however, rely on unrealistic assumptions (e.g. restarting the system at arbitrary states).
•Others are heuristically designed, lacking clear properties.

Our Approach to Hybrid IL+RL

• loki is a hybrid method that can both speed up learning and achieve locally optimal performance.
• Its design is motivated by the difference in the theoretical properties between RL and IL.
•We show that loki has good empirical and theoretical properties.
•Moreover, it is super simple to implement.
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LOKI: Locally Optimal search after K-step Imitation
• loki splits policy optimization into two phases, with a switching time K that is randomly determined.

Imitation Phase after K steps of updates−−−−−−−−−−−−→ Reinforcement Phase
•At step n, the policy is updated by mirror descent with Bregman divergence DRn

and step size ηn

θn+1 = arg min
θ∈Θ

〈gn, θ〉 + 1
ηn
DRn

(θ||θn).

• gn is a stochastic approximation of the (partial) derivative of EdπEπ[Aπ′] with respect to policy π.
• It uses a different reference policy π′ in each phase.

Reinforcement Phase (first-order RL)
•Policy gradient: the current policy πn is the reference policy and

gn = ∇θEdπEπ[Aπn]|π=πn = (∇θEdπ) [0] + Edπ (∇θEπ) [Aπn]|π=πn = Edπ (∇θEπ) [Aπn]|π=πn

•With properly chosen Rn, mirror descent with policy gradient covers most model-free RL algorithms.
•Majorization Optimization With small enough step size, it constructs a global upper-bound
approximation of the objective function and guarantees monotonic improvement of policies.

E[J(π1)] ≥ E[J(π2)] ≥ E[J(π3)] ≥ E[J(π4)] ≥ E[J(π5)] ≥ · · ·

Imitation Phase (first-order IL)
• Imitation gradient: the expert policy π? is the reference policy and

gn = ∇θEdπnEπ[c̃]|π=πn = Edπn(∇θEπ)[c̃]|π=πn

where c̃(s, a) (e.g. Ea?∼π?‖a− a?‖2) is chosen such that Eπ[c̃] ≥ Ω(Eπ[Aπ?]), implying
EdπEπ[c̃] ≥ Ω(J(π)− J(π?))

•Mirror descent with imitation gradient is a general first-order algorithm to online IL.
• It solves a surrogate RL problem: minπ∈Π EdπEπ[c̃]. This surrogate RL problem has a nice property,
called the normalization property: if π? ∈ Π, then there is a π ∈ Π such that Edπ′Eπ[c̃] ≤ 0 for all π′.
•As a result, this surrogate RL problem can be solved without using the policy gradient:

∇θEdπEπ[c̃] = (∇θEdπ) [c̃] + Edπ (∇θEπ) [c̃] 6= Edπ(∇θEπ)[c̃]
• Imitation gradient can have smaller bias and variance than policy gradient, as a Q-function
estimate and the likelihood-ratio trick are not required.
•Online Optimization Mirror descent with imitation gradient generally leads to on-average
improvement, and it constructs online loss surfaces which provide more global search directions toward
the (suboptimal) expert policy up to εΠ distance.

1
N

∑N
n=1 J(πn) ≤ J(π?) + εΠ + o(1)

Comparison of First-Order Oracles

Method First-Order Oracle

policy gradient (Sutton et al, 2000) Edπn (∇θEπ) [Aπn]
DAggereD (Ross et al., 2011) Edπn (∇θEπ) [Eπ∗[D]]
AggreVaTeD (Sun et al., 2017) Edπn (∇θEπ) [Aπ∗]
slols (Chang et al., 2015)‡ Edπn (∇θEπ) [(1− λ)Aπn + λAπ∗]
thor (Sun et al., 2018) Edπn (∇θEπ) [AH,π∗

πn,t ]
D is a distance function in the action space (e.g. ‖a− a∗‖2)
‡ This is a simplification of what was originally used in (Chang et al., 2015) but it has the same convergence guarantee.
AH,π∗

πn,t is a truncated advantage function

Results

Theoretical Properties
• (Informal) Let N be the total number of iterations of policy update across both phases, and K � N
be randomly selected with probability P (K = n) ∝ np for some 0 ≤ p� N . Then loki performs
almost as if it started from the expert policy, despite actually starting from a random policy.
•Because loki learns an on-policy value function estimate in the Imitation Phase, the variance of the
policy gradient in the Reinforcement Phase can be reduced.
•Optional batch IL can also be used to initialize the policy before the Imitation Phase.

Empirical Results
•We validated loki (implemented with trpo) using several robotic control experiments in DART
simulation environment and compared it with several baselines: Ideal (starting RL from the expert),
trpo (RL baseline), DAggereD (IL baseline), thor and slols (RL+IL baselines).
• loki in general performs closely to Ideal and learns faster than other baselines.
•As loki uses on-policy estimates, it does not suffer from the covariate shift problem (i.e. change of
input distributions) like other hybrid approaches.
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Figure: Learning curves. Shaded regions correspond to ±1
2-standard deviation.


