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Abstract— We introduce an information theoretic model pre-

dictive control (MPC) algorithm capable of handling complex

cost criteria and general nonlinear dynamics. The generality

of the approach makes it possible to use multi-layer neural

networks as dynamics models, which we incorporate into our

MPC algorithm in order to solve model-based reinforcement

learning tasks. We test the algorithm in simulation on a cart-

pole swing up and quadrotor navigation task, as well as on

actual hardware in an aggressive driving task. Empirical results

demonstrate that the algorithm is capable of achieving a high

level of performance and does so only utilizing data collected

from the system.

I. INTRODUCTION

Many robotic tasks can be framed as reinforcement learn-

ing (RL) problems, where a robot seeks to optimize a

cost function encoding a task by utilizing data collected by

the system. The types of reinforcement learning problems

encountered in robotic tasks are frequently in the continuous

state-action space and high dimensional [1]. The methods for

solving these problems are often categorized into model-free

and model-based approaches.

Model-free approaches to RL, such as policy gradient

methods, have been successfully applied to many challenging

tasks [2]–[5] These approaches typically require an expert

demonstration to initialize the learning process, followed by

many interactions with the actual robotic system. Unfortu-

nately, model-free approaches often require a large amount of

data from these interactions, which limits their applicability.

Additionally, while optimization of the initial demonstrated

policy leads to improved task performance, in the most pop-

ular gradient-based appraches the resulting solution remains

within the envelope of the initially demonstrated policy. This

limits the method’s ability to discover novel optimal control

behaviors.

In the second paradigm, model-based RL approaches first

learn a model of the system and then train a feedback control

policy using the learned model [6]–[8]. Other techniques

for model-based reinforcement learning incorporate trajec-

tory optimization with model learning [9] or disturbance

learning [10]. This means that interactions with the robotic

system must be performed at every iteration of the trajectory

optimization algorithm.

Despite all of the progress on both model-based and

model-free RL methods, generalization remains a primary

challenge. Robotic systems that operate in changing and

stochastic environments must adapt to new situations and
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Fig. 1. Aggressive driving with MPPI and neural network dynamics.

be equipped with fast decision making processes. Model

predictive control (MPC) or receding horizon control tackles

this problem by relying on online optimization of the cost

function and is one of the most effective ways to achieve

generalization for RL tasks [11]. However, most variations

of MPC rely on tools from constrained optimization, which

means that convexification (such as with quadratic approx-

imation) of the cost function and first or second order

approximations of the dynamics are required.

A more flexible MPC method is model predictive path

integral (MPPI) control, a sampling-based algorithm which

can optimize for general cost criteria, convex or not [12]–

[14]. However, in prior work, MPPI could only be applied

to systems with control affine dynamics. In this paper, we

extend the method so that it is applicable to a larger class

of stochastic systems and representations. In particular, we

demonstrate how the update law used in MPPI can be derived

through an information theoretic framework, without making

the control affine assumption. This is a significant step

forward because it enables a purely data-driven approach to

model learning within the MPPI framework. We use multi-

layer neural networks to approximate the system dynamics,

and demonstrate the ability of MPPI to perform difficult real

time control tasks using the approximate system model. We

test the MPPI controller in simulation, using purely learned

neural network dynamics, on a simulated cart-pole swing-up

task, and a quadrotor obstacle navigation task. Simulation

results demonstrate that the controller performs comparably

to an “ideal” MPPI controller, which we define as the MPPI

controller which has access to the actual simulation dynam-

ics. To further demonstrate the practicality and effectiveness

of the approach, we test it on real hardware in an aggressive

driving task with the Georgia Tech AutoRally platform and

obtain comparable results to MPPI with a hand-designed

physics-based vehicle model used in our prior work [12].



II. MODEL PREDICTIVE CONTROL

The theory of model predictive control for linear systems

is well understood and has many successful applications

in the process industry [15]. For nonlinear systems, MPC

is an increasingly active area of research in control theory

[16]. Despite the progress in terms of theory and successful

applications, most prior work on MPC focuses on stabiliza-

tion or trajectory tracking tasks. The key difference between

classical MPC and MPC for reinforcement learning is that

RL tasks have complicated objectives beyond stabilization

or tracking. The complexity of the objectives in RL tasks

increases the computational cost of the optimization, a major

problem since optimization must occur in real time. The most

tractable approach to date is receding-horizon differential

dynamic programming [17], which is capable of controlling

complex animated characters in realistic physics simulators,

albeit using a ground truth model. The fusion of learned

system models with the type of generalized MPC necessary

for solving RL problems is an emerging area of research.

The information theoretic MPC algorithm that we develop

is originally based on path integral control theory. In its

traditional form, path integral control involves taking an ex-

ponential transform of the value function of an optimal con-

trol problem and then applying the Feynman-Kac formula to

express the solution to the Hamilton-Jacobi-Bellman partial

differential equation in terms of an expectation over all possi-

ble system paths. To make this transformation, the dynamics

must be affine in controls and satisfy a special relationship

between noise and controls. In [18], this approach was

connected to the information theoretic notions of free energy

and relative entropy (also known as KL divergence), which

was then exploited in [12] to derive a slightly generalized

path integral expression. Here, we take this one step further,

and completely remove the control affine requirement. The

resulting derivation and update law are closely related to the

cross-entropy method for stochastic diffusion processes [19],

as well as reward weighted regression [20]. However, those

prior works are geared towards updating the parameters of a

feedback control policy, whereas we focus on optimizing an

open-loop control plan for use with MPC.

III. INFORMATION THEORETIC CONTROL

In this section we introduce the theoretical basis for our

sampling based MPC algorithm. The derivation relies on

two important concepts from information theory: the KL

divergence and free energy. The result of the derivation is an

expression for an optimal control law in terms of a weighted

average over sampled trajectories. This leads to a gradient-

free update law which is highly parallelizable, making it ideal

for online computation.

A. Objective Function
We consider the discrete time stochastic dynamical sys-

tem:
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t
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the commanded control input to the system. We assume

that if we apply an input u

t

then the actual input will be

v

t

⇠ N (u

t

,⌃). This is a reasonable noise assumption for

many robotic systems where the commanded input has to

pass through a lower level controller. A prototypical example

is the steering and throttle inputs for a car which are then

used as set-point targets for low level servomotor controllers.

We define V = (v

0

,v
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, . . .v

T�1

) as a sequence of inputs

over some number of timesteps T . This sequence is itself a

random variable defined as mapping V : ⌦! ⌦

V

where ⌦

is the sample space and ⌦

V

= Rm ⇥ {0, 1, . . . T � 1} is the

image of ⌦. Note that by changing the control input sequence
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) we can change the probability dis-

tribution for V . There are three distinct distributions which

we are interested in. First, we denote P as the probability

distribution of an input sequence in the uncontrolled system

(i.e. U ⌘ 0), next we denote Q as the distribution when

the control input is an open-loop control sequence. Lastly,

we denote Q⇤
as an abstract “optimal distribution” which

we will define shortly. The probability density functions for

these distributions are denoted as p, q, and q

⇤
respectively.

Note that the density functions p and q have simple analytic

forms given by:
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Given an initial condition x

0

and an input sequence V , we

can uniquely determine the corresponding system trajectory

by recursively applying F. We thus have a mapping from

inputs V to trajectories, denoted as ⌧ . Let ⌦

⌧

⇢ Rn ⇥
{0, . . . T � 1} be the space of all possible trajectories and

define:

G
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as the function which maps the input sequences to trajectories

for the given initial condition x

0

. Now consider a state-

dependent cost function for trajectories:
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where �(·) is a terminal cost and q(·) is an instantaneous

state cost. We can use this to create a cost function over input

sequences by defining S : ⌦

V

! R+

as the composition:

S = C � G
x0 (7)

Now let � be a positive scalar variable. The free-energy of

the control system (F, S,�) is defined as:
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Next we switch the expectation to be with respect to Q by

adding in the likelihood ratio
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. This yields:
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Now apply Jensen’s inequality:
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, then the term inside

the logarithm will reduce to a constant, which means that

Jensen’s inequality becomes an equality. This will be impor-

tant shortly. Now we continue by rewriting the right-hand

side of (10) as:
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where the final step is a consequence of (2 – 3) and the fact

that v

t

has mean u

t

under the distribution Q. So, mirroring

the approach in [18], we have the cost of an optimal control

problem bounded from below by the free energy of the

system. Now we want to define an “optimal distribution” for

which the bound is tight. We define Q⇤
through its density

function:
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where ⌘ is the normalizing constant. It is easy to see that

this distribution satisfies the condition that it is proportional

to 1/ exp

�
� 1

�

S(V )

�
. So Jensen’s inequality reduces to an

equality for Q⇤
, and the bound is tight. Now that we have

an optimal distribution, we can follow the approach in [12]

and compute the control to push the controlled distribution

as close as possible to the optimal one. This corresponds to

the optimization problem:

U

⇤
= argmin

U

D
KL

(Q⇤ k Q) (15)

B. KL Divergence Minimization
Our goal is to derive an expression for the optimal controls

defined in (15). Using the definition of KL divergence, we

have D
KL

(Q⇤ k Q) equal to:

Z

⌦

V

q

⇤
(V ) log

✓
q

⇤
(V )

q(V )

◆
dV

=

Z

⌦

V

q

⇤
(V ) log

✓
q

⇤
(V )

p(V )

p(V )

q(V )

◆
dV

=

Z

⌦

V

q

⇤
(V ) log

✓
q

⇤
(V )

p(V )

◆

| {z }
Independent of U

�q⇤
(V ) log

✓
q(V )

p(V )

◆
dV

Neither the optimal distribution nor the distribution corre-

sponding to the uncontrolled dynamics depends on the con-

trol input that we apply. This can be verified by examining

the density functions p and q

⇤
. Therefore, the left-most term

does not depend on U and can be removed:
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Note that we have flipped the sign and changed the mini-

mization to a maximization. It is easy to show that:
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Inserting this into (16) yields:
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After integrating out the probability in the first term, this

expands out to:

T�1X

t=0

✓
�1

2

u

T

t

⌃

�1

u

t

+ u

T

t

Z
q

⇤
(V )⌃

�1

v

t

dV

◆
(19)

This is concave with respect to each u

t

so we can find the

maximum with respect to each u

t

by taking the gradient and

setting it to zero. Doing this yields:
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C. Importance Sampling
If we could sample from the optimal distribution Q⇤

,

then we could compute u

⇤
t

by drawing samples from Q⇤

and averaging them. However, we clearly cannot sample

from Q⇤
, so we need to be able to compute the integral

by sampling from a proposal distribution. Consider that (20)

can be rewritten as:
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Therefore, the optimal controls can be rewritten as an expec-

tation with respect to Q:
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Lastly, we make a change of variables u
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denote the noise sequence as E = (✏
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Where ⌘ can be approximated using the Monte-Carlo esti-

mate:
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with each of the N samples drawn from the system with U

as the control input. We then have the iterative update law:

u
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Note that the iterative procedure exists simply to improve

the Monte-Carlo estimate of (21) by using a more accurate

importance sampler. If we could compute (21) with zero

error, then we could minimize the KL-Divergence between

the controlled and optimal distribution in a single step.

The result of this optimization is that the expectation

of inputs sampled from the controlled distribution is the

same as the expectation of the inputs sampled from the

optimal distribution (EQ[vt

] = EQ⇤
[v

t

]). Under the control-

affine assumptions in [21], it can be shown that this is

equivalent to computing the optimal control. However, it

is not known if this is true in general. In particular, if the

optimal distribution is highly multi-modal, than expectation

matching might be insufficient, and it may be necessary to

use a more complex parameterization than an open loop

sequence. However, empirical results do not seem to indicate

that this is a problem, even when there are apparent multi-

modalities in the solution space (e.g. navigating a field of

obstacles).

IV. MPC WITH NEURAL NETWORK DYNAMICS

To deploy (26) in an MPC setting, we need a model to

sample from. In the model-based RL setting, this means

learning a model from data. In this section, we describe our

learning procedure and the real-time MPC implementation

of (26).

A. Learning Neural Network Models
The kinematics for our robotic systems of interest are triv-

ial given the velocities, so we need only learn the dynamics

of each system (i.e., its acceleration). Specifically, given that

the state x is partitioned as x = (q,

˙

q), where q is the

configuration of the system and

˙

q is its time derivative, we

seek a function f so that the full state transition is:
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where �t is a discrete time increment. We represent f

with a fully-connected, multi-layer, neural network and train

it on a dataset of state-action-acceleration triplets D =

{(x
t
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using minibatch gradient descent

with the RMSProp optimizer [22].

To create a dataset for learning the model, we follow a

two-phase approach. In the first phase, we collect system

identification data and then train the neural network. For

simulation data, the MPPI controller with the ground truth

model is run, whereas a human driver is used in real-

world experiments. The ability to collect a bootstrapping

dataset in this manner is one of the main benefits of model-

based RL approaches: they can use data collected from any
interaction with the system since the dynamics do not usually

depend on the algorithm controlling the system or the task

being performed. In the second phase, we repeatedly run the

MPPI algorithm with the neural network model, augment the

dataset from the system interactions, and re-train the neural

network using the augmented dataset. In some cases, the

initial dataset is enough to adequately perform the task. This

procedure is shown in Alg. 1.

Algorithm 1: MPPI with Neural Network Training

Input: Task, N : Iterations, M : Trials per iteration

D  CollectBootstrapData();

for i 1 to N do

F Train(D);

for j  0 to M do

D
j

 MPPI(F, Task) ;

D  D [D
j

We perform this procedure using a range of neural net-

work sizes in order to determine the effect of network

configuration on control performance. Table I describes the

network configurations that we use in our simulations and

experiments, all of the networks that we use are fully-

connected networks with two hidden layers.

TABLE I

LAYER SIZES AND ACTIVATIONS OF MODELS

System Layer 1 Size Layer 2 Size Activation

Cart-Pole 16 16 Tanh

Cart-Pole 32 32 Tanh

Cart-Pole 64 64 Tahh

Quadrotor 16 16 Tanh

Quadrotor 32 32 Tanh

Quadrotor 64 64 Tanh

AutoRally 32 32 Tanh

B. MPC Algorithm
In model predictive control, optimization and execution

take place simultaneously: a control sequence is computed,

and then the first element of the sequence is executed.

This process is repeated using the un-executed portion of

the previous control sequence as the importance sampling

trajectory for the next iteration. In order to ensure that at

least one trajectory has non-zero mass (i.e., at least one

trajectory has low cost), we subtract the minimum cost of

all the sampled trajectories from the cost function. Note that

subtracting by a constant has no effect on the location of the

minimum. The key requirement for sampling-based MPC is

to produce a large number of samples in real time. As in [12],

we perform sampling in parallel on a graphics processing unit

(GPU) using Nvidia’s CUDA architecture.

The use of neural networks as models makes sampling

in real time considerably more difficult because forward

propagation of the network can be expensive, and this

operation must be performed T ⇥K times. For example, the

dynamics model for the autorally vehicle in [12] consisted

of 100 parameters and a single matrix multiply, whereas the

neural network model that we learn for the AutoRally task



Algorithm 2: MPPI

Given: F: Transition Model;

K: Number of samples;

T : Number of timesteps;

(u

0

,u

1

, ...u

T�1

): Initial control sequence;

⌃,�, q,�: Control hyper-parameters;

while task not completed do

x

0

 GetStateEstimate();

for k  0 to K � 1 do

x x

0

;

Sample Ek

= {✏k
0

, ✏

k

1

, . . . ✏

k

T�1

};

for t 1 to T do

x

t

 F(x

t�1

,u

t�1

+ ✏

k

t�1

);

S(Ek

) += q(x

t

) + �u

T

t�1

⌃

�1

✏

k

t�1

;

S(Ek

) += �(x

T

);

�  min

k

[S(Ek

)];

⌘  
P

K�1

k=0

exp

�
� 1

�

(S(Ek

)� �)

�
;

for k  0 to K � 1 do

w(Ek

) 1

⌘

exp

�
� 1

�

(S(Ek

)� �)

�
;

for t 0 to T � 1 do

u

t

+=

P
K

k=1

w(Ek

)✏

k

t

;
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);

has 1412 parameters and consists of successive large matrix

multiplications and non-linearities. To make this tractable we

take advantage of the parallel nature of neural networks and

further parallelize the algorithm by using multiple CUDA

threads per trajectory sample.

V. SIMULATED RESULTS

We test our approach on a simulated cart-pole swing-up

and quadrotor navigation tasks. In these simulated scenarios,

a convenient benchmark is the MPPI algorithm with access to

the ground-truth model used for the simulation. This provides

a metric for how much performance is lost by using an

approximate model to the system.

A. Cart-Pole Swing Up
In this task, the controller has to swing and hold a

pendulum upright using only actuation on the attached cart,

starting with the pendulum oriented downwards. The state-

dependent cost function has the form:

10x
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2

+ ẋ

2

+ 15

˙
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(27)

The system noise is set at 0.9 and the temperature � is

set equal to 1. The bootstrapping dataset for the cart-pole

comes from 5 minutes of multiple MPPI demonstrations

using known dynamics but a different cost function for

the swing-up task. These system identification trajectories

show the cart-pole’s behavior when the pole is upright, but

they don’t exhaust enough of the state-action space for the

MPPI controller to act correctly immediately. The cart-pole

is of low enough dimensionality that no bootstrap dataset

is required to perform the task, though at the cost of more

training iterations. The relative trajectory costs are shown in

Fig. 2, where each iteration consists of one 10 second trial.
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Fig. 2. Normalized state costs of executed cart-pole trajectories. The cost

is normalized so that the ground-truth MPPI controller has a cost of 1.

Average costs are computed from ten trials. Note the logarithmic scale and

that relative costs are clamped to a maximum of 100.

B. Quadrotor Navigation
For this task, a quadrotor must fly from one corner of

a field to the other while avoiding circular obstacles. We

use the quadrotor model from [23], but we treat body frame

angular rates and net thrust as control inputs. The state-

dependent cost function has the form:

q(x) = (x� x

d

)

T

Q (x� x

d

) + 100000C (28)

x

d

= (50, 50, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0) (29)

Q = Diag(1, 1, 1, 25, 25, 25, 1, 1, 1, 1, 1, 1) (30)

Here (50, 50, 5) indicates the (x, y, z) position target, the

variable C is an indicator variables which is turned on

if the quadrotor crashes into an obstacle or the ground.

The temperature was set as � = 1 and the system noise

to (2.5, .25, .25, .25), where the 2.5 value corresponds to

the thrust input. Since the quadrotor has twelve state and

four action dimensions, bootstrapping the neural network

dynamics becomes necessary. Running the algorithm without

a bootstrapped neural network results in repeated failures. We

bootstrap the neural network with 30 minutes of an MPPI

demonstration with known dynamics and a moving target but

no obstacles.

All network models yield similar results, as shown in Fig.

3. The bootstrap data is enough for the MPPI controller with

the medium-sized network to navigate the field. However,

the smallest and largest networks require an extra iteration

to become competent at the task. After one iteration, the

algorithm achieves the same level of performance regardless

of which network is being used. An example trajectory

successfully navigating the field is also shown in Fig. 3.
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C. Multi-Step Error

We train the neural network dynamics on one-step predic-

tion error, which does not necessarily result in accurate multi-

step prediction. In the worst case, compounding multi-step

errors can grow exponentially [24]. The multi-step error over

the prediction horizon for the cart-pole is shown in Fig. 4.

For cart-pole dynamics the smaller, bootstrapped networks

performed best. Note that the worst performers on multi-

step error for the cart-pole directly correlate with the worst

performers on the swing-up task, as one would expect.

None of the networks for the quadrotor dynamics perform

significantly better or worse in multi-step error, which is

reflected in the near identical performance of the MPPI con-

troller with each of the three networks. The final positional

and orientation errors after the 2.5 second prediction horizon

are approximately 1.5 meters and 0.4 radians, respectively.

Mitigating the build up of model error is a primary chal-

lenge in model-based RL. MPC has two characteristics which

help in this regard. The first is that it only requires a short

time horizon, and the second is that it constantly recomputes

the planned control sequence. The final performance margins

for both the cart-pole and quadrotor are within 10% of

what can be achieved with perfect model knowledge, which

indicates that, in this case, our MPC algorithm is robust to

these errors.
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Fig. 4. Multi-step prediction error for cart position and pendulum angle.

VI. EXPERIMENTAL RESULTS

We apply our approach to the task of aggressively driving

around a dirt track with the Georgia Tech AutoRally vehicle

from [12]. In our prior work, MPPI was successfully applied

to this task using a physics-inspired model. In our current

experiments, a neural network is used in place of this hand-

designed model.

A. Bootstrapping Dataset

To train an initial model, we collected a system iden-

tification dataset of approximately 30 minutes of human-

controlled driving at speeds varying between 4 and 10

m/s. The driving was broken into five distinct behaviors:

(1) normal driving at low speeds (4–6 m/s), (2) zig-zag

maneuvers performed at low speeds (4–6 m/s), (3) linear

acceleration maneuvers which consist of accelerating the

vehicle as much as possible in a straight line, and then

braking before starting to turn, (4) sliding maneuvers, where

the pilot attempts to slide the vehicle as much as possible,

and (5) high speed driving where the pilot simply tries to

drive the vehicle around the track as fast as possible. Each

one of these maneuvers was performed for three minutes

while moving around the track clockwise and for another

three minutes moving counter-clockwise.

B. Experimental Setup

The experiments took place at the Georgia Tech Au-

tonomous Racing Facility (Fig. 5). This facility consists of

an elliptical dirt track approximately 3 meters wide and 30

meters across at its furthest point. The MPPI controller is

provided with a global map of the track in the form of a

cost-map grid. This cost-map is a smoothed occupancy grid

with values of zero corresponding to the center of the track,

and values of one corresponding to terrain that is not a part of

the track. The cost-map grid has a 10 centimeter resolution

and is stored in CUDA texture memory for efficient look-ups

inside the optimization kernel. We use a neural network with

2 hidden layers of 32 neurons each and hyperbolic tangent

non-linearities. The MPPI controller uses a time horizon of

2.5 seconds, a control frequency of 40 Hz, and performs 1200

samples every time-step. This corresponds to 4.8 million

forward passes through the neural network every second.

On-board computation is performed using an Nvidia GTX

750 Ti GPU, which has 640 CUDA cores. The cost function

for the racing task had the following form:

q(x) = 2.5(s� s

des

)

2

+ 100M(x, y) + 50S

c

(31)

�(x

T

) = 100000C (32)

Here s and s

des

refer to the speed and desired speed of

the vehicle, respectively. M(x, y) is the cost-map value at

the position (x, y), and S

c

is an indicator variable which

activates if the magnitude of the slip angle exceeds a cer-

tain threshold. The slip angle is defined as � arctan(

v

y

|v
x

| ),
where v

x

and v

y

are the longitudinal and lateral velocities,

respectively. The terminal cost is dependent on an indicator

variable C which denotes whether or not the vehicle crashed



Fig. 5. Experimental setup at the Georgia Tech Autonomous Racing

Facility.

at any point during the time window. During training, we

set the slip angle threshold to 15.76 degrees (0.275 radians),

and for the final testing runs we raised it to 21.5 degrees

(0.375 radians). The sampling variance was set to 0.20 in the

steering input and 0.25 in the throttle input. During training,

the desired speed was set to 9 m/s (20.13 mph) and then

gradually raised to 13 m/s (29.08 mph) for the final testing

run. For collecting statistics, we defined a trial as 3 laps

around the track starting from a full stop. Each training/test

iteration consisted of three separate trial runs.

C. Results
With training settings of 9 m/s and 0.275 radians, the

controller successfully maneuvered the vehicle around the

track using only the initial system identification data. We

performed 5 iterations, each consisting of 3 trials, for a total

of 45 laps around the track. This corresponds to slightly

over 8 minutes of total run-time. Adding new data into the

TABLE II

TRAINING STATISTICS

Avg. Lap (s) Best Lap (s) Top Speed (m/s) Max. Slip

Iter. 1 10.98 10.50 8.13 22.14

Iter. 2 10.79 10.32 7.84 27.4

Iter. 3 11.05 10.55 8.00 33.5

Iter. 4 10.85 10.43 7.60 25.78

Iter. 5 11.11 10.84 7.49 22.62

training set and re-training the neural network model did not

noticeably improve the performance of the algorithm. One

explanation for this is that the initial dataset was deliberately

collected for system identification, and it consists of a variety

of maneuvers meant to excite various modes of the dynamics.

TABLE III

TESTING STATISTICS

Avg. Lap (s) Best Lap (s) Top Speed (m/s) Max. Slip

10 m/s 10.34 9.93 8.05 38.68

11 m/s 9.97 9.43 8.71 34.65

12 m/s 9.88 9.47 8.63 43.72

13 m/s 9.74 9.36 8.44 48.70

After the training runs, we tested the limits of the con-

troller, using the model from the final training iteration.

Specifically, we increased the threshold for penalized slip
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angle and the desired speed. We started with the desired

speed at 10 m/s and gradually increased it to 13 m/s. At 13

m/s, the vehicle only completed two of three runs. At the

lower settings, it successfully completed all trials.

Figure 7 shows the paths taken by the controller along with

their velocity profiles. In both cases, the vehicle slows down

coming into turns and accelerates out of them, eventually

reaching a high speed along the middle of the straight. This

is an intuitively obvious strategy, however it is worth noting

that there is no portion of the cost function which explicitly

enforces this behavior. Rather, this behavior emerges from

the interaction between the neural network dynamics and

the cost function.



Tables II and III show the statistics for the training and

testing runs. The more aggressive runs complete the trials

in faster times and obtain a higher top speed and maximum

slip angle than the training runs. The velocity profiles of

the training and test trials also differ dramatically. In the

conservative training runs, the vehicle hits its top speed in

the first half of the straight and immediately slows down,

eventually coasting into the corner. In the aggressive setting,

the vehicle maintains its speed all the way into the corner

and then power slides through the turn (Fig. 1). This is

demonstrated by the high slip angles in the more aggressive

runs. The overall lap times achieved are slightly faster than

what was achieved previously in [12]. The fastest three lap

set is displayed in the accompanying video for this paper.

VII. CONCLUSION

We have derived an information theoretic version of model

predictive path integral control which generalizes previous

interpretations by allowing for non-affine dynamics. We

exploited this generalization by applying the MPPI algorithm

in the context of model-based reinforcement learning and

used multi-layer neural networks to learn a dynamics model.

In two challenging simulation tasks, the controller with the

learned neural network model achieves performance within

10% of what is obtained with a perfect ground-truth model.

The scalability and practicality of the algorithm was

demonstrated on real hardware in an aggressive driving

scenario, where the algorithm was able to race a one-fifth

scale rally car around a 30 meter long track at speeds over

8 m/s. In doing this, it performed difficult controlled power-

slides around corners. This success came despite the presence

of significant disturbances, such as deep grooves on portions

of the track and patches of very fine loose dirt which could

have easily caused the vehicle to lose traction.

This type of model-based reinforcement learning that we

propose, combining generalized model predictive control

with machine learning approaches for learning dynamics,

is a promising new direction for solving the challenging

problems that arise in robotics. The key tools in this approach

are the information theoretic concepts of free energy and

the KL divergence, scalable machine learning algorithms

for learning dynamics, and intensive parallel computation

for online optimization. The result of our approach is the

emergence of complex behaviors, such as power-sliding

through turns when racing, that arise purely due to the inter-

action between the optimization, cost function, and learned

dynamics.
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