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Abstract— We present a framework for value function learn-
ing that propagates value information over a given horizon
instead of the usual single time step. By starting with a standard
reinforcement learning problem, we relax the problem into
another reinforcement learning problem where each time step
corresponds to multiple time steps in the original problem. We
then apply this framework to a simulated racing task and show
that learning a value function over the horizon can improve
performance of the car when using a relatively short planning
horizon.

I. INTRODUCTION

Autonomous racing has recently gathered more research
interest, including how to automatically learn how to race.
Autonomous racing techniques typically rely on model pre-
dictive control (MPC) and usually follow one of two ap-
proaches: either a two-level approach that first optimizes
a reference trajectory and then constructs a controller to
track the trajectory [1]–[4], or a one-level approach that
directly solves the minimum-time problem [3], [5]. While
the former approach splits the problem into two easier
subproblems, the trajectory optimization phase tends to be
purely geometric [1], [3] or uses linearized dynamics [2],
[4]. Thus, the trajectory optimization phase may produce
an infeasible or suboptimal trajectory. The latter approach
directly accounts for the dynamics, but convex relaxations
are made to allow for the use of optimization libraries
like FORCES [6]. This may, for instance, limit the parts
of the track the car is allowed to consider. A fundamental
downside of both approaches is their reliance on the MPC
principle, which means that they cannot globally optimize
the minimum-time task. Indeed, prior works typically plan
for only about a second ahead, which is not long enough to
yield optimal behavior.

Dynamic programming techniques, on the other hand, can
systematically find optimal behaviors by propagating the
value information over time (e.g., through value iteration
or Q-learning). Exact dynamic programming techniques are
intractable to use in large (or continuous) spaces, which gives
rise to approximate dynamic programming (ADP) techniques
like fitted value iteration or fitted Q-iteration. ADP tech-
niques have proven to be quite useful, yielding state-of-the-
art results in several games [7]–[9] and impressive results
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in robotics [10]–[12]. For backgammon, Atari games, and
the cited robotics papers, a trained Q-function is sufficient
to make decisions based on a combination of ease of the
task and representational power of the neural networks used
to represent the Q-function. For the game of Go, though,
a combination of a fitted value function and a randomized
planning algorithm was necessary to surpass human-level
performance [9], [13], owing to the combinatorial size of the
state space and the difficulty of learning an accurate value
estimate. In general, errors in a fitted value function with
respect to the true value function can incur performance
deficiencies proportional to the value error and length of
the problem, something which can be mitigated significantly
when the value function is used as the terminal cost in a
planning algorithm [14].

The idea of combining planning with value functions can
be extended to control, as MPC approaches can be viewed
as solving a truncated optimal control problem [15], which
can then be converted to an infinite-horizon problem by
using the value function as a terminal cost. One recent
approach that relies on this idea of combining MPC and
ADP is learning MPC (LMPC) [16], which maintains an
estimate of the value function based on interactions with the
system of interest. LMPC forms a value function estimate
by building a safe set from the visited states over an episode
and recording the observed value from each visited state.
Within the convex hull of the safe set, the value is estimated
through a convex interpolation. This approach guarantees
asymptotic stability and non-decreasing performance over
time. LMPC has recently been applied to racing [17], [18],
where the authors use practical approximations by only
relying on recent data to form the value estimate. The authors
then demonstrate consistently improving performance on
a 1:10 scale car from an initially conservative controller,
ultimately reaching the limits of the handling capability of
the car. We observe, however, that despite the fact that value
estimates come from the control system (and are therefore
unbiased estimates), noisiness in the control system can
induce pessimistic estimates of the value. For example, if
the car drives over a rock on a turn that causes the car to
not make the turn cleanly, this can give the misimpression
that the control strategy was faulty.

Autonomous racing with the AutoRally platform [19]
has made great strides over the past few years, owing in
large part to the model predictive path integral (MPPI)
control algorithm [20]. MPPI is a stochastic optimization-
based MPC algorithm which operates by sampling about a
nominal control sequence and updating the sequence based
on the goodness of the sampled trajectories. An advantage
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of this method compared to other MPC algorithms is that
it can operate with general dynamics and cost functions,
even discontinuous ones. This allows for high-level cost
functions such as maximizing speed and remaining within the
track. However, this method still lags in lap time compared
to human experts [21]. One reason is due to its short
planning horizon. Typically, MPPI plans for 2 to 2.5 seconds
ahead, whereas human experts devise maneuvers between
upcoming sections of a track, effectively planning over a
longer horizon.

While one can merely increase MPPI’s planning horizon to
simulate what human experts do, the resulting performance
actually worsens. This arises from a different shortcoming of
the algorithm: Since MPPI is sampling-based, the variance
of the optimization increases unfavorably with the planning
horizon [22]. Furthermore, errors in the dynamics model used
by MPPI can give rise to a spurious plan if the planning
horizon is too long.

One can overcome the aforementioned issue while still
considering a long horizon by including the value function
as a terminal cost to MPPI, something already considered in
[14], [23]. In these papers, the authors interleave executing
an MPC algorithm on a control system with the use of the
same MPC algorithm to generate value targets to train a value
network. They validate their approach on simulated tasks
like in-hand manipulation and humanoid pushing tasks where
a learned value function is indeed necessary for MPC to
solve the tasks. The authors also observe that using an MPC
algorithm to generate the value targets helps to accelerate and
stabilize the learning of the value function, an observation
also made in [13] when solving Go.

In this work, we propose using a value learning scheme
similar to [14] and [23] where we use MPC to generate value
function targets. We first show how incorporating planning
into value learning can be formalized as a new reinforcement
learning problem, one where each decision of the agent is
a control sequence and each time step of the new problem
corresponds to a number of time steps in the old problem.
This allows us to update the value function over longer time
scales and accelerate convergence of the value function. We
then validate this approach on a simulated AutoRally racing
task, showing that, by incorporating a value function into
MPPI, one can improve performance of the controller. We
also show that using planning to train the value function
results in better performance than doing repeated one-step
backups in the original RL problem.

II. APPROACH

A. Preliminaries

We consider a Markov decision process (MDP) defined by
the tuple M = (X ,U , p, c, γ), where X ⊆ Rn is the state
space, U ⊆ Rm is the control space, p : X × X × U → R+

is the (modeled) stochastic dynamics, c : X × U × X → R
is the cost function, and γ ∈ [0, 1) is the discount factor. At
some time t, we define xt ∈ X as the state and ut ∈ U
as the controls. We seek a stochastic policy π(ut|xt) that
accumulates low cost over time while being noisy in the

form of having high entropy1. Encouraging the policy to be
noisy has been shown to improve robustness of the policy
[24]. Given a policy π, we define its value V π(x) at some
state x as the expected sum of discounted costs and entropies
when starting at x:

V π(x) = Eπ,p

[ ∞∑
t=0

γt(c(xt,ut,xt+1)− λH(π(ut|xt)))

∣∣∣∣∣x0 = x

]

where λ > 0 is a temperature parameter that encourages the
policy to have higher entropy.

Following [23], [25], [26], we seek a stochastic policy
that optimizes the average value over some initial state
distribution p0(x):

π∗ = argmin
π

Ep0(x)[V
π(x)] (1)

We denote the resulting value function as V ∗ and refer to it
as the optimal value function. It can be shown [25] that the
optimal value function and the corresponding state-control
value Q∗ satisfy the following mutual recurrence for any
x ∈ X and u ∈ U :

V ∗(x) = −λ log
∫
U
exp

(
− 1

λ
Q∗(x,u)

)
du (2)

Q∗(x,u) = Ep(x′|x,u)[c(x,u,x
′) + γV ∗(x′)] (3)

It can also be shown that the optimal policy has the form:

π∗(u|x) = exp

(
− 1

λ
(Q∗(x,u)− V ∗(x))

)
(4)

Intuitively, controls that yield lower accumulated cost are
exponentially more probable.

B. Relaxing the Time Scale

Finding the optimal policy π∗ through dynamic program-
ming algorithms like soft value iteration [25] has appealing
convergence rates. In practice, however, we must rely on
approximate techniques with parametric functions like neural
networks to represent V ∗. Thus, costs may need to be
propagated across many time steps through bootstrapped
training of a neural network, which can result in divergence
due to compounding errors [27], [28]. Recent work [14], [23]
has shown that incorporating planning into the generation of
value function targets can accelerate and stabilize the value
function training since the costs are being more directly
propagated over a longer horizon.

We thus propose to restrict ourselves to stochastic policies
π̃(ut, . . . ,ut+H−1|xt) over a horizon H . We also modify
the problem in (1) as follows: Instead of querying the policy
π every time step, we sample an H-step control sequence
every H time steps from the policy π̃ and apply it open-loop.
In doing so, we relax (1) to yield a reinforcement learning
problem over π̃. Abbreviating c(xt,ut,xt+1) with ct, we
observe the following:

1For some distribution p(x), the entropy of the distribution is defined as
H(p(x)) = Ep(x)[− log p(x)].



min
π

Eπ,p,p0

[ ∞∑
t=0

γ
t
(ct − λH(π(ut|xt)))

]

≤min
π̃

Eπ̃,p,p0

[ ∞∑
k=0

H−1∑
h=0

γ
kH+h

(ckH+h − λH(π̃(ukH+h|xkH)))

]

≤min
π̃

Eπ̃,p,p0

[ ∞∑
k=0

γ
kH

H−1∑
h=0

(
γ
h
ckH+h − γ

H−1
λH(π̃(ukH+h|xkH))

)]

≤min
π̃

Eπ̃,p,p0

[ ∞∑
k=0

γ
kH

{
H−1∑
h=0

γ
h
ckH+h

− γ
H−1

λH
(
π̃(ukH+(0:H−1)|xkH)

)}]
(5)

where the first inequality comes from restricting our policy to
π̃, the second inequality from γh ≥ γH−1 for 0 ≤ h ≤ H−1,
and the third inequality from the fact that the joint entropy
is at most the sum of the marginal entropies.

The structure of the original reinforcement learning prob-
lem is still present, and indeed we can reduce (5) to a
reinforcement learning problem by properly defining a new
MDP. We define our new time index as k, the new state
space as X̃ = X , and the new control space as Ũ = UH .
Accordingly, we define the state and controls at time k as x̃k
and ũk, respectively. The new state and controls are related
to the old ones as follows:

x̃k = xkH

ũk = (ukH , . . . ,ukH+H−1)

We define the new stochastic dynamics p̃(x̃k+1|x̃k, ũk) as
the rolled-out dynamics of the original MDP marginalized
over the intermediate states:

p̃(x̃k+1|x̃k, ũk)
= p(xkH+H |xkH ,ukH+(0:H−1))

=

∫
XH−1

p(xkH+(1:H)|xkH ,ukH+(0:H−1)) dxkH+(1:H−1)

=

∫
XH−1

H−1∏
h=0

p(xkH+h+1|xkH+h,ukH+h) dxkH+(1:H−1)

We define the new cost function c̃(x̃k, ũk, x̃k+1) as the
expected sum of discounted costs over the intermediate
states:

c̃(x̃k, ũk, x̃k+1) = ExkH+(1:H−1)|xkH ,ukH ,xkH+H

[
H−1∑
h=0

γhckH+h

]

Finally, we define the new discount factor γ̃ as γ̃ = γH .
We define the new MDP M̃ as M̃ = (X̃ , Ũ , p̃, c̃, γ̃) with
temperature λ̃ = γH−1λ.

We now state and prove the main contribution of the paper.
Proposition 1: The reinforcement learning problem

min
π̃

Eπ̃,p̃,p0

[
∞∑

k=0

γ̃k
(
c̃(x̃k, ũk, x̃k+1)− λ̃H(π̃(ũk|x̃k))

)]
(6)

is identical to (5).

Proof: We show that the objective functions are the
same. We first substitute γ̃ and λ̃ into (5) and move the outer
summation through the expectation so that we start with:

∞∑
k=0

γ̃kEπ̃,p,p0

[
H−1∑
h=0

γhckH+h − λ̃H
(
π̃(ukH+(0:H−1)|xkH)

)]
We then note that we can marginalize out all variables
in the expectation except for the relevant subtrajectories
xkH+(0:H) and ukH+(0:H−1). We define ρπ̃t (xt) as the
marginal distribution of the state xt at time step t when
we run π̃ under dynamics p and initial state distribution p0.
Thus, the expectation in the above expression can be written
as

E
ρπ̃
kH

(x̃k)

Eπ̃(ũk|x̃k)ExkH+(1:H)|x̃k,ũk

H−1∑
h=0

γ
h
ckH+h

 − λ̃H
(
π̃(ũk|x̃k)

)

We then observe that the innermost expectation is equal to

ExkH+(1:H−1),x(k+1)H |x̃k,ũk

[
H−1∑
h=0

γhckH+h

]

= Ex̃k+1|x̃k,ũk
ExkH+(1:H−1)|x̃k,ũk,x̃k+1

[
H−1∑
h=0

γhckH+h

]
= Ep̃(x̃k+1|x̃k,ũk)[c̃(x̃k, ũk, x̃k+1)]

so that we have

E
ρπ̃
kH

(x̃k)

[
Eπ̃(ũk|x̃k)Ep̃(x̃k+1|x̃k,ũk)[c̃(x̃k, ũk, x̃k+1)] − λ̃H(π̃(ũk|x̃k))

]
Defining ρ̃π̃k (x̃k) as the marginal distribution of x̃k at time
step k when we run π̃ under dynamics p̃ and initial state
distribution p0 and noting that ρ̃π̃k (x̃k) = ρπ̃kH(x̃k), we
observe the above expression is equal to

E
ρ̃π̃
k
(x̃k)

[
Eπ̃(ũk|x̃k)Ep̃(x̃k+1|x̃k,ũk)[c̃(x̃k, ũk, x̃k+1)] − λ̃H(π̃(ũk|x̃k))

]
Substituting this expression into the expression at the begin-
ning of the proof yields

∞∑
k=0

γ̃kEρ̃π̃
k
(x̃k)

[
Eπ̃(ũk|x̃k)

Ep̃(x̃k+1|x̃k,ũk)
[c̃k]− λ̃H(π̃(ũk|x̃k))

]
where c̃k is shorthand for c̃(x̃k, ũk, x̃k+1). Grouping the
three expectations into one expectation (over x̃k, ũk, and
x̃k+1), re-introducing all marginalized states and controls
into the expectation, and moving the expectation through the
summation, we get the objective in (6).

We denote the optimal value function, state-control value
function, and policy corresponding to (6) as Ṽ ∗, Q̃∗, and π̃∗,
respectively, and find that they take an expectedly similar
form to (2)–(4):

Ṽ ∗(x̃) = −λ̃ log
∫
Ũ
exp

(
− 1

λ̃
Q̃∗(x̃, ũ)

)
dũ (7)

Q̃∗(x̃, ũ) = Ep̃(x̃′|x̃,ũ)

[
c̃(x̃, ũ, x̃′) + γ̃Ṽ ∗(x̃′)

]
(8)

π̃∗(ũ|x̃) = exp

(
− 1

λ̃

(
Q̃∗(x̃, ũ)− Ṽ ∗(x̃)

))
(9)



C. Estimating the Value Function

We therefore have an MDP that runs at a coarser time scale
(one time step in M̃ corresponds to H time steps in M).
One consequence is that dynamic programming algorithms
like soft value iteration can converge much more quickly (at
a rate of γ̃ = γH in M̃ versus γ in M) without increasing
the dimensionality of the state. Though the dimensionality of
the controls has increased to Hm, the value function in (7)
involves integration (or expectation if importance sampling
is used) instead of a minimization operation encountered in
standard reinforcement learning. Thus, for moderate values
of the temperature λ̃, we can build a low variance estimator
of the value function.

As previously alluded, the value function in (7) can be
recursively expressed with importance sampling. That is, for
some π̃ with full support over Ũ , we have

Ṽ ∗(x̃) = −λ̃ logEπ̃(ũ|x̃)

[
1

π̃(ũ|x̃) exp
(
− 1

λ̃
Q̃∗(x̃, ũ)

)]
The importance sampler that induces the minimum variance
for the estimator turns out to be the optimal policy π̃∗, which,
unfortunately, is intractable to sample from. Instead, we use
some Gaussian distribution π̂ to perform the importance
sampling. To mitigate the sampling variance, we bring π̂ as
close as possible to the optimal policy π̃∗. In particular, for
some given state x̃, we seek a π̂ which minimizes the KL
divergence2 to the optimal distribution:

π̂∗(ũ|x̃) = argmin
π̂

KL(π̃∗(ũ|x̃) ∥ π̂(ũ|x̃))

This is equivalent to matching the mean and covariance of
π̃∗, which we denote as µ̃∗(x̃) and Σ̃∗(x̃), respectively.
We can find the mean and covariance through importance
sampling:

µ̃∗(x̃) = Eπ̃∗(ũ|x̃)[ũ]

=

∫
Ũ
exp

(
− 1

λ̃
Q̃∗(x̃, ũ)

)
ũdũ∫

Ũ
exp

(
− 1

λ̃
Q̃∗(x̃, ũ)

)
dũ

=
Eπ̂(ũ|x̃)

[
1

π̂(ũ|x̃) exp
(
− 1
λ̃
Q̃∗(x̃, ũ)

)
ũ
]

Eπ̂(ũ|x̃)

[
1

π̂(ũ|x̃) exp
(
− 1
λ̃
Q̃∗(x̃, ũ)

)] (10)

where we overload π̂ to mean some setting of our Gaussian
distribution. Similarly, for the covariance:

Σ̃
∗
(x̃) = Eπ̃∗(ũ|x̃)

[
(ũ − µ̃

∗
(x̃))(ũ − µ̃

∗
(x̃))

T
]

=
Eπ̂(ũ|x̃)

[
1

π̂(ũ|x̃)
exp

(
− 1

λ̃
Q̃∗(x̃, ũ)

)
(ũ − µ̃∗(x̃))(ũ − µ̃∗(x̃))T

]
Eπ̂(ũ|x̃)

[
1

π̂(ũ|x̃)
exp

(
− 1

λ̃
Q̃∗(x̃, ũ)

)]
(11)

From the consistency condition of the value function and
the form of the importance sampler, we can now use a

2For two distributions p(x) and q(x) such that
q(x) = 0 =⇒ p(x) = 0 for any x, the KL divergence is defined
as KL(p(x) ∥ q(x)) = Ep(x)

[
log

p(x)
q(x)

]
.

practical algorithm to estimate the value function. We first
define the Bellman operator B̃ as

B̃Ṽ (x̃) = −λ̃ log

∫
Ũ
exp

(
−

1

λ̃
Ep̃(x̃′|x̃,ũ)

[
c̃(x̃, ũ, x̃

′
) + γ̃Ṽ (x̃

′
)
])

dũ

(12)

For some given x̃ and value function estimator Ṽ , we
compute (12) by first finding the Gaussian distribution
π̃∗(ũ|x̃) which minimizes the KL divergence to the op-
timal distribution induced by Ṽ . In this case, the Gaus-
sian is defined by Equations (10) and (11) but with
Ep̃(x̃′|x̃,ũ)

[
c̃(x̃, ũ, x̃′) + γ̃Ṽ (x̃′)

]
in place of Q̃∗(x̃, ũ).

From there, we use importance sampling with π̂∗ in (12)
to estimate the Bellman operator at x̃.

We use a neural network Ṽθ parameterized by some
vector θ to approximate the value function Ṽ ∗. Over some
distribution ρ(x̃) over states, we seek a setting of θ which
minimizes the regression error

θnew = argmin
θ

Eρ(x̃)
[(
Ṽθ(x̃)− B̃Ṽθold

(x̃)
)2

]
(13)

where θold is the parameter setting when we perform the re-
gression and θnew is the parameter setting that then overrides
θold in our neural network. This bootstrapped regression can
be done repeatedly to have Ṽθ more directly approximate the
infinite horizon value function Ṽ ∗.

D. Racing Task

Fig. 1: The race track of
interest. Image taken from
[20].

Fig. 2: The AutoRally car.
Image taken from [29].

For the AutoRally task, we seek to minimize the lap time
on a given dirt track (Fig. 1) when driving a 1:5-scale rally
car (Fig. 2). We respectively define the state x and controls
u as x = (s, ey, eψ, φ, vx, vy, ψ̇) and u = (a, δ). Here, the
position of the car is represented in a curvilinear reference
frame (Fig. 3) so that s is the longitudinal position along
the track, ey is the lateral deviation from the center of the
track, and eψ is the deviation of the car’s heading from the
centerline heading. We define φ as the roll of the car body,
vx as the longitudinal velocity, vy as the lateral velocity, and
ψ̇ as the heading rate. For the controls, a is the car’s throttle,
and δ is the steering angle of the front wheels.

ey

s

distance travelled along the path

path’s origin

Fig. 3: Curvilinear coordinate frame. Image taken from [18].



We define the step cost c to maximize progress along the
track while penalizing for any violated constraints:

c(x,u,x′) = 1000(s−s′)+10M(ey)+1051violation(x,x
′)

Here, M(ey) is the positional cost of the car, with lowest cost
at the center of the track (i.e., ey = 0) and increasing cost
as we move towards either side of the track. The indicator
function 1violation(x,x

′) is one if either state is outside the
track boundaries or if the car’s heading is more than 60
degrees off from the current track heading (i.e., |eψ| ≥ 60◦).
Otherwise, the value is zero. If such a violation occurs, the
car is treated as reaching some terminal “crash” state where
we accrue a (discounted) cost of 105 for each remaining time
step in the planning horizon.

We model the dynamics of the car as a combination of
known kinematics (since the car is a rigid body) and a neural
network to model the acceleration. The neural network is
fitted to acceleration data collected from a human driving
the car through various maneuvers. Since both the kinematics
and neural network are deterministic, the resulting dynamics
p(x′|x,u) correspond to a Dirac delta function (i.e., a
deterministic mapping).

To control the car, we employ the MPPI algorithm, which
operates by similarly finding a Gaussian distribution which
minimizes the KL divergence to the optimal distribution in
(9). The main difference with the previous section is that we
control in receding horizon fashion (i.e., plan H steps into the
future, but re-plan every time step instead of every H time
steps) and keep the covariance fixed. The former improves
robustness of the control system, while the latter has been
found to be more reliable than optimizing the covariance in
a continual task like racing, mainly to prevent covariance
collapse [30]. For MPPI, we define the optimal distribution
to be the one induced by our neural network Ṽθ:

π̃∗
θ(ũ|x̃) = exp

(
−

1

λ̃

(
Ep̃(x̃′|x̃,ũ)

[
c̃(x̃, ũ, x̃′) + γ̃Ṽθ(x̃

′)
]
− Ṽθ(x̃)

))
III. EXPERIMENTS AND RESULTS

For all our experiments, we use the dynamics model
discussed in the previous section as our simulator. We set
the discount factor and temperature in M to be γ = 0.995
and λ = 0.3, respectively. We represent the value function
estimator with a neural network with two hidden layers (32
neurons per hidden layer with a tanh activation) and use the
exponential function as the output activation. The exponential
function constrains the value to be positive3 and allows us
to learn a function with a large output range.

When training our value function, we maintain a dataset of
states and corresponding value targets from (12). If we per-
form bootstrapping, the value targets get recomputed using
the current value function estimator Ṽθ. After performing
some number of episodes in the simulator, we append the
corresponding states and value targets to our dataset. We

3Accordingly, we add a small positive number to the cost function to
ensure it is positive.

then solve (13) using the Adam optimizer with a step size
of 10−3 and 5000 epochs over the dataset.

We show that our value learning framework can be suc-
cessfully applied to a simulated racing task. In particular,
we show that incorporating a value function as a terminal
cost can enhance the performance of MPPI, especially if the
planning horizon is short. We also show that performing a
Bellman backup over a horizon as in (12) can result in better
performance than performing an equivalent number of 1-step
Bellman backups.

A. Value Functions for Racing

We train a value function by doing a single batch of 25-
step Bellman backups (corresponding to a horizon of 0.5
seconds) after MPPI drives the car 5 laps with a planning
horizon of 50 steps (corresponding to a horizon of 1 second).

30 40 50 60 70 80 90 100
Planning horizons in time steps

6

7

8

9

10

La
p

tim
e

(s
ec

on
ds

)

Without value function
With value function

Fig. 4: Lap times with different planning horizons and
whether a value function is incorporated. Shaded regions
correspond to ±1 standard deviation.

When using the value function as a terminal cost in MPPI,
we find that lap times vastly improve when a shorter planning
horizon is used (Fig. 4). As the planning horizons increases
past 50 time steps, the value function serves a much lesser
role owing to the heavy discount factor. Furthermore, the
MPPI algorithm becomes noisier owing to the larger horizon,
which is reflected in the lap times increasing with the
planning horizon. With a reasonably accurate value function,
a short planning horizon offers the best performance since
the optimization is much less noisy, and the value function
acts as a guide for MPPI. This is corroborated by the fact
that in Fig. 4 shorter planning horizons with a terminal value
function provide the shortest lap times.

We can also see the effect of the value function by
comparing the paths taken with and without it (Fig. 5).
With a short horizon and no value function, the car cannot
drive around the turn without significantly losing momentum
(Fig. 5a). On the other hand, the value function provides
MPPI enough foresight to make the entire turn at high speeds
(Fig. 5b).
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Fig. 5: MPPI with planning horizon of 30 time steps.
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Fig. 6: Lap times when using 1-step Bellman backups.
Shaded regions correspond to ±1 standard deviation.

B. Comparison with One-Step Backups

While, in principle, we can instead perform multiple 1-
step Bellman backups, we found that does not work well
for the AutoRally task, as shown in Fig. 6. Here, we fix
the MPPI planning horizon to 50 time steps. While there is
improvement in lap times up to 12 backups, the performance
deteriorates thereafter due to errors in the cost function
propagating over time. This manifests in the car taking a turn
more slowly than necessary, as seen in Fig. 7. Furthermore,
none of the trained value function results in a lower lap time
than the network trained on a single 25-step backup. This
is likely because directly considering the right controls to
take over a moderate horizon allows to more easily generate
good value targets rather than relying on multiple single-step
backups which may produce errors over time.
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Fig. 7: Worsened performance when using 1-step boot-
strapped value function.

We similarly find bootstrapping the 25-step Bellman back-
ups results in worse lap times (Fig. 8), again due to com-
pounding errors. In this case, the resulting value function
causes the car to take both turns more conservatively.
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Fig. 8: Lap times when using 25-step bootstrapped value
function. Shaded regions correspond to ±1 standard devia-
tion.

IV. CONCLUSIONS

We presented a planning-based method to train value
function approximators. By starting with the reinforcement
learning problem of interest, we relaxed it to a new rein-
forcement learning problem where each decision corresponds
to a control sequence. Though we can no longer optimize
the original problem, the new RL problem allows for use
of efficient estimation methods and can propagate value
information over a longer time scale.

We then validated our approach on a simulated racing
task by showing that incorporating a value function can
significantly decrease lap times when using a short planning
horizon. We also showed that directly propagating costs over
a horizon is more stable than performing some number of
single-step backups.
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