
Empirical Evaluation of Recurrent Neural Networks
for System Identification

Nolan Wagener
Interactive Computing

Georgia Institute of Technology
Atlanta, GA 30332

nolan.wagener@cc.gatech.edu

Abstract

In this paper, we introduce a method to train RNNs to perform system identifi-
cation of a physical system. Such a method includes a pretraining scheme that
allows the RNN to learn the state representation, state dynamics, and observation
equation in separate steps. We train RNNs both with and without this pretraining
scheme along with a baseline linear system from N4SID–EM and compare their
performance. We find that pretraining the RNN doesn’t hurt performance and for
the most part makes it easier to train the network. However, learned linear systems
perform better on simpler systems (like SDOF mass-spring-dampers), with them
only performing worse than RNNs on the MDOF mass-spring-damper.

1 Introduction

System identification is a deeply studied field that has widely varying applications in areas like
control, machine learning, and finance. A classic approach within this field is to fit some parameters
of a given model using least squares or maximum likelihood techniques [10]. However, the model
must be relatively accurate and all necessary features must be measurable.

Of course, a system of interest may have difficult-to-model effects such as friction, backlash, and
deadbands for mechanical systems. Furthermore, a system may not be fully observable and so
unobserved states would have to be estimated. A way to combat both of these problems is through
latent space approaches (like subspace identification) and non-parametric methods.

Recurrent neural nets (RNNs) have potential for system identification and have achieved state-of-
the-art success in problems such as handwriting and speech recognition. Within handwriting recog-
nition, long short-term memory nets (LSTMs) have achieved start-of-the-art success by outperform-
ing HMM methods by over 10% [6]. Within speech recognition, these networks outperformed the
previous state-of-the-art technique by 0.6% [7]. There is also theoretical backing for using RNNs
since, under mild assumptions, they have been shown to be universal approximators of general
dynamical systems [3]. Finally, because they are parametric, they don’t suffer from the same com-
putational complexity problems that non-parametric methods do, since their complexity increases
polynomially with the amount of data.

In this paper, we will empirically investigate how well RNNs perform for system identification in
terms of accuracy, comparing them to linear systems generated from a linear subspace identification
technique.



2 Related Work

One way of performing system identification is through subspace techniques. For instance, algo-
rithms based on N4SID (numerical algorithms for subspace state space system identification) find a
linear description for a partially observed system by performing a singular value decomposition of
an oblique projection formed from the input and output data [13]. Other algorithms may be based
on MOESP (multivariable output-error state space), which uses the LQ and singular value decom-
positions based on a matrix formed from the input, output, and user-defined weights [13]. The
EM algorithm can then be used after either of the previous algorithms to further refine the system
matrices it was given [4].

Non-parametric techniques such as Gaussian processes can also be used since they are not restricted
to fitting to a user-given model. For instance, they have been used for learning dynamics and obser-
vations of a Bayes’ filter to great effect when compared to parametric techniques [8].

RNNs have the capability of modeling dynamical systems with neural networks. For instance, there
has been work in learning a deep recurrent model for fruits for the purposes of cutting [9]. The model
was designed so that it would learn both short-term and long-term latent features, which would aid in
encoding material properties. This RNN combined with model predictive control has allowed a PR2
to significantly outperform trajectory-based stiffness controllers for fruit cutting. Another neural
network application came with modeling a helicopter [11]. Rectified linear units were used for the
activation functions and were able to divide the data into different regions that corresponded to dif-
ferent portions of demonstrated trajectories. This method was able to achieve a 60% improvement in
RMS acceleration error over linear least squares methods based that were on a “Linear Acceleration
Model” (proposed in [1]) and its variants. Furthermore, validation error was noted to continually
decrease as the number of hidden units increased, albeit with diminishing returns. Two things of
note are that the network was feedforward instead of recurrent and the predictions were of the linear
and angular accelerations of the helicopter and not of the next state.

3 Model

fθ

z−1

z−1ht

ut yt+1

yt

ỹt

st st+1

ŷt

Figure 1: Our model

gθsut

st

ỹt
st+1

hθy yt+1

Figure 2: Our implementation of fθ

Our model is based on the block diagram shown in Figure 1. Here, fθ is an RNN that is parame-
terized by some weights θ and has a state st. The external input to the RNN is given by ut and an



observation ỹt (which is either the true observation ŷt or the predicted observation yt) is also fed
into the network. When ỹt = ŷt, the RNN will have its state corrected (much like how a Kalman
filter will use the observation to correct a linear system state), and when ỹt = yt, the RNN will infer
the next observation. The latter may be useful in applications like model predictive control (MPC),
where the model must evolve in open-loop for an extended period of time.

For our system, the RNN is a two-layer network (one layer for the state update and one layer for the
observation) with the hyperbolic tangent function as the activation. The state update equation is

st+1 = gθs(st, ut, ỹt) = tanh(W s
s st +W s

uut +W s
y ỹt + bs) (1)

and is shown graphically in Figure 3. The observation equation is

yt+1 = hθy (st+1) = C tanh(W y
s st+1 + by) + d (2)

and is shown graphically in Figure 4. In total, our set of parameters for the RNN is θ =
{W s

s ,W
s
u ,W

s
y ,W

y
s , b

s, by, C, d}.

+

W s
u

W s
s

W s
y

bs

st

ut

ỹt

1

tanh st+1

Figure 3: Our implementation of gθs

W y
s

st+1 +

by

1

tanh C +

d

1

yt+1

Figure 4: Our implementation of hθy

The network fθ itself will use those two inputs and its latent state to yield the next state and predicted
observation (i.e. (st+1, yt+1) = fθ(st, ut, ỹt)).

4 Training Algorithm

Training is done using backpropagation through time (BPTT) with a sequence length of 50 [5].
For the gradient descent algorithm, we use rmsprop as it should help prevent the algorithm from
thrashing about a local minimum [12]. During training, the value of ỹt is chosen by a stochastic
function ht, which is defined as

ht(yt, ŷt) =

{
ŷt, with probability εt
yt, with probability 1− εt

The curriculum scheudle εt is chosen so that it will decrease from one to zero as t increases. This
means that early on, the network will mostly be trained with the true observation, whereas towards
the end it will mostly be trained on its own predicted observations. Being fed the true observations
early will allow the network to more quickly set its parameters to do well on filtering. Training on



predicted observations will let the model become robust to its own mistakes and make inference
accurate [2]. The schedule we decided to use was the inverse sigmoid decay1, an example of which
is shown in Figure 5. During validation, the network will be fed with the true observations ŷt (i.e., do
filtering) on the first half of the dataset and fed with the predicted observations yt (i.e., do inference)
on the second half.

Iteration #10 4
0 0.5 1 1.5 2 2.5 3

"

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Inverse sigmoid decay schedule (k = 2000)

We also propose a pretraining scheme to help the RNN learn what the state representation, the
dynamics of the state, and the observation equation should be in separate supervised regression
steps.

yt−N :t−1

ut−N :t−1

ut:t+M−1

Encoding NN Decoding NN ŷt:t+M−1

st

Figure 6: Pretraining step for learning state representation

For the first step, we propose finding a good state representation by compressing the past data and
future inputs into a low-dimensional vector that can be used to predict the future observations. This
low-dimensional vector will be considered our state. In order to do that, we learn both an encoding
and a decoding neural network so that the predicted observations are close to the actual observations
from the dataset. This function is shown in Figure 6. The input for this pretraining step is the dataset
of inputs and observations, and the output is the collection of states {st}.

ut

st

yt

gθs ŝt+1

Figure 7: Pretraining step for learning dynamics

Next, we fit the dynamics in Equation (1) by making the predicted next state ŝt+1 close to the
corresponding state from our dataset. The input to this pretraining step is the dataset of inputs and
observations and the generated states from the previous step, and the output is the set of parameters
θs = {W s

s ,W
s
u ,W

s
y , b

s}.
1εt = k/(k + exp(t/k)), where k ≥ 1



st hθy ŷt

Figure 8: Pretraining step for learning observation

Finally, we fit the observation in Equation (2) by making the predicted observation ŷt close to the
corresponding observation from our dataset. The input to this pretraining step is the collection
of generated states from the first pretraining step, and the output is the set of parameters θy =
{W y

s , C, b
y, d}.

The RNNs parameters θ are then initialized from θs and θy and training through BPTT commences.

5 Results

Our code was implemented in Theano for its ease of use in prototyping neural network architectures
and its speed of executing code on GPUs. All experiments were performed on an Intel Core i7
CPU and an NVIDIA Tesla K40 GPU. Because of the way CUDA functions were implemented in
Theano, only single precision support was available.

To evaluate how well recurrent neural networks (RNNs) perform for system identification, we used
their performance on some datasets we generated as a yardstick. These datasets came from sys-
tems of increasing complexity: a linear mass-spring damper system, a mass-spring damper system
with a nonlinear spring, and a multi-degree of freedom (MDOF) mass-spring-damper with multiple
nonlinearities. For the first two systems, the input is force and output is mass position. The third
system comes from MATLAB’s System Identification Toolbox. Figure 9 shows the model2. The
input is motor torque and the output is the motor’s angular velocity. For all datasets, Laplacian noise
is added to the observations. For training and evaluation, we whiten the inputs and observations.

Figure 9: MDOF nonlinear mass-spring-damper

As baselines, we also trained RNNs without the pretraining scheme and generated linear systems
from an N4SID–EM algorithm. For evaluation of the linear system, we use a trained Kalman filter
with the linear system on the first half of the dataset, and allow the linear system to evolve in open-
loop on the second half of the dataset.

The relevant figures and tables are:

• Numerical results: Tables 1, 2, 3
• Sample plots of predictions: Figures 10a, 11a, 12a
• Validation set loss: Figures 10b, 11b, 12b

Overall, the linear system significantly outperforms the RNNs for the SDOF mass-spring-damper
systems. However, for the more complicated MDOF system, both RNNs outperform the linear
system, with the pretrained network performing the best by far. Between the RNNs, pretraining
either doesn’t affect performance or allows the RNN to learn better.

2Image taken from http://www.mathworks.com/help/ident/examples/
modeling-an-industrial-robot-arm.html

http://www.mathworks.com/help/ident/examples/modeling-an-industrial-robot-arm.html
http://www.mathworks.com/help/ident/examples/modeling-an-industrial-robot-arm.html


Table 1: Linear mass-spring-damper results

Algorithm Filtering loss Inference loss Total loss
N4SID–EM 0.0162 0.0922 0.0562

RNN without pretraining 0.1629 0.1612 0.1620
RNN with pretraining 0 .0180 0 .1235 0 .0735

Table 2: Nonlinear mass-spring-damper results

Algorithm Filtering loss Inference loss Total loss
N4SID–EM 0.0008 0.0787 0.0418

RNN without pretraining 0.0252 0 .1745 0 .1038
RNN with pretraining 0 .0053 0.2091 0.1126

5.1 Linear mass-spring-damper

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

F
or

ce

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

4

Time index

P
os

iti
on

 

 
Actual
N4SID−EM
RNN without pretraining
RNN with pretraining

(a) Sample validation set input, output, and predic-
tions)

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time index

M
S

E
 e

rr
or

 

 

N4SID−EM
RNN without pretraining
RNN with pretraining

(b) Validation set loss

Figure 10: Linear mass–spring–damper (filtering at indices 1–500, inference at indices 501–1000)

Here, the pretrained RNN and the learned linear system perform nearly identically, as they overlap
a lot in Figures 10a and 10b. However, given its simplicity and ease of generating, the learned linear
model is likely preferable.

5.2 Nonlinear mass-spring-damper

The linear system significantly outperforms both RNNs in both filtering and inference. Pretraining
does not seem to help the RNN here.

5.3 MDOF mass-spring-damper

Here, the more complicated dynamics and larger range of inputs and outputs seem more suiting for
the RNN, as both RNNs outperform the learned linear model. As well, the pretrained RNN performs
ten times better in filtering and 50% better in inference than the other RNN.

6 Conclusion

We have presented a framework for training RNNs to perform system identification including a
pretraining technique. We have also compared performance between RNNs trained with and without
this technique as well as linear systems generated from N4SID-EM. Thus far, pretraining either helps



Table 3: MDOF mass-spring-damper results

Algorithm Filtering loss Inference loss Total loss
N4SID–EM 0.4819 1.0286 0.7580

RNN without pretraining 0.3598 0.8967 0.6310
RNN with pretraining 0.0367 0.5994 0.3209

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

F
or

ce

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

Time index

P
os

iti
on

 

 

Actual
N4SID−EM
RNN without pretraining
RNN with pretraining

(a) Sample validation set input, output, and predic-
tions)

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time index
M

S
E

 e
rr

or
 

 

N4SID−EM
RNN without pretraining
RNN with pretraining

(b) Validation set loss

Figure 11: Nonlinear mass–spring–damper (filtering at indices 1–500, inference at indices 501–
1000)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−4

−2

0

2

4

T
or

qu
e

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

1

2

Time index

A
ng

ul
ar

 v
el

oc
ity

 

 

Actual
N4SID−EM
RNN without pretraining
RNN with pretraining

(a) Sample validation set input, output, and predic-
tions)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

Time index

M
S

E
 e

rr
or

 

 

N4SID−EM
RNN without pretraining
RNN with pretraining

(b) Validation set loss

Figure 12: MDOF mass–spring–damper (filtering at indices 1–2500, inference at indices 2501–
5000)

or does not affect performance of learned RNNs, but for simpler problems, linear systems appear to
perform better.

This, however, is far from an exhaustive study on RNNs and system identification. In the future,
we’d like to assess how well RNNs perform for more interesting systems (for example, inverted
cartpole with partially observed states) that linear systems would likely have trouble with. Also,
we would like to try different neural network architectures that might be more adept at learning
dynamics. Finally, we would like to use these RNNs in a control environment, like using DDP or
MPC with the RNN as a model to invert a pendulum on a cartpole.



References

[1] P. Abbeel, V. Ganapathi, and A. Y. Ng. Learning vehicular dynamics, with application to
modeling helicopters. In Advances in Neural Information Processing Systems, pages 1–8,
2006.

[2] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence prediction
with recurrent neural networks. In Advances in Neural Information Processing Systems, pages
1171–1179, 2015.

[3] K. Funahashi and Y. Nakamura. Approximation of dynamical systems by continuous time
recurrent neural networks. Neural Networks, 6(6):801–806, 1993.

[4] Z. Ghahramani and G. E. Hinton. Parameter estimation for linear dynamical systems. Technical
report, Technical Report CRG-TR-96-2, University of Totronto, Dept. of Computer Science,
1996.

[5] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.
[6] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber. A novel

connectionist system for unconstrained handwriting recognition. volume 31, pages 855–868.
IEEE, 2008.

[7] A. Graves, A.-R. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural
networks. In 2013 IEEE international conference on acoustics, speech and signal processing,
pages 6645–6649. IEEE, 2013.

[8] J. Ko and D. Fox. GP-BayesFilters: Bayesian filtering using Gaussian process prediction and
observation models. Autonomous Robots, 27(1):75–90, 2009.

[9] I. Lenz, R. A. Knepper, and A. Saxena. DeepMPC: Learning deep latent features for model
predictive control. In Robotics: Science and Systems. Rome, Italy, 2015.

[10] L. Ljung. System Identification: Theory for the User. Prentice Hall, 1987.
[11] A. Punjani and P. Abbeel. Deep learning helicopter dynamics models. In 2015 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 3223–3230. IEEE, 2015.
[12] T. Tieleman and G. Hinton. Lecture 6.5-RMSprop: Divide the gradient by a running average of

its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.
[13] P. Van Overschee and B. De Moor. Subspace identification for linear systems. Springer Science

& Business Media, 2012.


