
EECS C149/249
Line-Maze Solving Robot

Project Group:
Kyle Chiang
Nolan Wagener

Project Mentor:
Garvit Juniwal

December 20, 2013



Introduction & Problem Definition

Our project consisted of using a Pololu m3pi robot and Bluetooth communication with a computer
to construct the map of a line maze, be able to go to desired destinations optimally, and be able to
change paths to these destinations depending on whether “doors” in the maze are open or closed.
This system is is meant to simulate an office environment where a robot moves among different
rooms to pick up and later deliver things like mail. At first, the robot must learn its environment
by exploring the office and generating a map of it. However, certain conditions in the environment
may change, such as doors opening and closing, which the robot must be able to replan how it
reaches destinations optimally.

Outline of Approach

Tools Used

(a) m3pi robot with extra sensors and hardware (b) Color sensor and reflectance sensors

We decided to use the Pololu m3pi robot because it is a standard robot among hobbyists that
can be used to solve line mazes. The robot came built-in with reflectance sensors that can detect
varying levels of brightness. Since our destinations and doors were going to be represented with
different colors of tape and had to be identified properly, we added an ADJD color sensor to the
bottom of the robot. Both of these sensors are shown in Figure 1b. For Bluetooth communication,
we added a BlueSMIRF Bluetooth modem. Finally, we added an mbed microcontroller because it
had more processing power and memory than the m3pi’s ATmega328 microcontroller. The robot
is shown on one of our mazes in Figure 2.

1



Figure 2: Maze with robot

Similarities to Other Projects

At first glance the problem statement seems very similar to that of a typical maze-solving robot
project, where a robot is given a maze, and must navigate and solve the maze several times as
quickly as possible. There are many competitions where the goal is to do just that, where nearly
all the competitors use some variant of the following algorithm:

1. Traverse the maze by hugging the left wall while maintaining a sequence of actions at every
intersection until the robot arrives at the destination.

2. Upon arrival at the destination, reduce the series of actions by eliminating any series of actions
that brings the robot back to a previous location, for instance reaching and coming back from
a dead end. For a maze without loops, this would result in the shortest path from start to
finish.

3. Repeat this path as many times as necessary

However, comparing the standard maze-solving approach to ours, we notice a few key differences
in the assumptions that lead to very different solutions.

1. The typical maze solving project assumes that the robot has a fixed start position and des-
tination. In our project, we allow the robot to start at any location and the robot must be
able to find its way to multiple destinations.

2. The typical project assumes a maze without loops. However, in our project, not only do we
have loops that we make sure the robot doesn’t get stuck in, but we also have doors that
open and close, resulting in a somewhat “dynamic” maze.

Two Phases of Action

The problem naturally separated itself in to two major phases: mapping and navigation.

2



• Mapping
Before any path finding can be done, the maze must first be mapped out. During the mapping
phase, the computer instructs the robot to continue exploring until a map can be fully drawn.
Meanwhile, the robot follows instructions sent by the computer and provides information to
the computer regarding what turns can be made at each intersection. The robot also lets the
computer know when it has traveled to doors and destinations. All doors are assumed to be
open during the mapping phase. By using a computer to construct a map and determine the
exploration path, we prevent the robot from getting stuck in a loop. This method also allows
us to more efficiently explore the maze.

• Navigation
Once the map of the maze has been constructed, a user can open and close the doors and
instruct the robot to go to any of the explored destination points. The computer will then
use uniform cost search (UCS) to find the shortest path to the destination. If the robot
encounters a closed door, it will stop and the computer will determine the next shortest path
to get to the destination.

Multiple Levels of Control

We approached this project with three levels of abstraction, a high level computer for data collection
and path planning, an mbed microcontroller to handle maze navigation and line following, and an
ATmega328 microcontroller to control the individual actuators. In a real world situation, the
computer would be on-board the robot, taking in user inputs from a web interface. However, due
to the lack of processors on the robot and a focus on robot navigation instead of web development,
we decided to provide this functionality from a laptop.

• Path-Finding and User Input
At the highest level, we have a laptop computer to store the explored maze and interact with
the user to determine where the robot would go next. The laptop is also used to determine
what paths the robot needs to take to explore the maze and how get to each destination using
UCS.

• PID Control
On the m3pi robot, we attached an mbed microcontroller to handle the maze navigation and
PID control loop for line following. Taking the instructions from the laptop, the mbed would
determine how fast the robot needed to travel and how much it needed to turn to follow the
line and make the turns at the appropriate intersections.

• Actuator / Sensor Control
At the lowest level, the m3pi comes with an ATmega328 microcontroller. We use this mi-
crocontroller as a slave that takes the robot velocities and determines how much voltage and
current would be needed to be supplied to the actuators to produce the desired behavior.

3



Algorithms & Formal Models

Mapping the Maze

(a) Picture of a line maze with doors and
destinations (b) Same line maze modeled as an undirected graph

Figure 3: Modeling of line maze

A typical maze that we map and solve is shown in Figure 3a. Because the vertices are spaced evenly
and all motion is restricted to north, south, east, and west, we can represent the maze with a graph
such as that in Figure 3b. Each vertex is a coordinate and color of the coordinate. For our project,
yellow tape represents a door, and blue and red tape represent destinations. Edges represent black
tape that connect vertices and the cost of the edge is the length of the tape. Therefore, we can
model the exploration using graph algorithms, two key ones of which are Algorithms 1 and 2.

How these algorithms work with the robot can be described as follows: When the robot begins
exploring, it first inspects what edges surround its current location. It will then add this vertex to
a list of vertices that have edges that need to be traversed. The following process is then repeated
until there are no vertices in the list:

1. The computer will have the robot go to the vertex the shortest distance away in the list of
vertices with unvisited edges. If the vertex the robot is at currently has unvisited edges, the
robot does not move.

2. The computer will have the robot go to a direction that has not been traversed yet.

3. The computer will time how long it takes the robot to reach either a branch, fork, or a tape
segment that is not black (meaning it has reached either a door or destination). It will create
a vertex at coordinates based on how long it takes the robot to get there.

4. The computer will add edges to the maze it is creating based on the information the robot
sends back. If the vertex has edges that need to be visited, this vertex will be added to the
list of vertices that must be visited. If at any time there are vertices in the list that don’t
need to be visited, they’ll be removed from it.

4



Algorithm 1 Algorithm to explore maze

1: procedure ExploreMaze(unknownMaze)
2: maze← empty graph
3: maze.VerticesToVisit ← {}
4: maze.AddVertexAndEdges(unknownMaze.StartState)
5: while maze.VerticesToVisit is not empty do
6: currentState← maze.NearestVertexToVisit()
7: unknownMaze.SetCurrentState(currentState)
8: maze.AddVertexAndEdges(unknownMaze.ExploreNewVertex())
9: end while

10: end procedure

Algorithm 2 Algorithm to add vertex and edges and to update maze.VerticesToVisit

1: procedure AddVerticesAndEdges(maze, newV ertex)
2: previousV ertex← maze.CurrentState
3: maze.AddVertex(newV ertex) . also sets the current state to newV ertex
4: maze.VerticesToVisit.Add(maze.CurrentState)
5: for all direction in [North, East, South, West] do
6: if newV ertex has edge of orientation direction then
7: vertex← maze.FirstVertexAfterAction(maze.CurrentState, direction)
8: if vertex exists and (ManhattanDistance(maze.CurrentState, vertex) = 1 or

vertex = previousV ertex) then
9: maze.AddEdge(maze.CurrentState, vertex)

10: vertex.ChangeVisit(direction, False)
11: maze.CurrentState.ChangeVisit(direction, False)
12: if vertex.NoEdgesToVisit() then maze.VerticesToVisit.Remove(vertex)
13: end if
14: else
15: maze.CurrentState.ChangeVisit(direction, True)
16: end if
17: end if
18: end for
19: if maze.CurrentState.NoEdgesToVisit() then
20: maze.VerticesToVisit.Remove(maze.CurrentState)
21: end if
22: end procedure

5



Navigating the Maze

(a) The solved maze

(b) Adding destinations and closing doors

Figure 4: Resultant Map GUI

Once every vertex in the maze has been discovered, a window like that in Figure 4a appears. The
black circle indicates the position of the robot when exploration began and is used to help the user
match the destination on the map to the coordinates in the GUI. For instance, the upper-left blue
vertex has coordinates (−3, 2). The user can then click destination buttons to have the robot visit
destinations in a certain order. The user can also close doors, meaning that the robot cannot travel
on an edge to the door and exit the door using a different edge. Both of these features are shown
in Figure 4b.

Once the user presses the “SEND ORDERS” button, the computer will iterate through each
destination in the destination queue, building an optimal list of actions using UCS and sending this
list to the robot so that it can reach the destination. However, the computer first assumes that
all doors are open since in reality doors are open and closed without the robot’s knowledge. If a
robot happens upon a door which the user made to be closed, the computer will remove all edges
except whichever one the robot used to get to the door (so the robot can still access the maze) and
will perform UCS again. The computer will then assume that all doors that were discovered to be
closed remain closed until all desired destinations have been visited. Then all doors are assumed
to be open again.

6



Maze Traversal

For the robot, we based the maze traversal code on PID control. Given a series of commands the
robot needs to execute:

1. The robot follows the line it is currently on using standard PID control until it detects a
vertex. We define a vertex as a point where the reflectance sensors detect a path to the left
or right, no path to the front, or colored tape right in front of it.

2. Upon arriving at a vertex, we break out of the PID control loop and stop the robot.

3. If the computer had expected the robot to arrive at this vertex and had already sent a
command (e.g. left turn) for the robot to execute at this vertex, the robot would execute the
command and resume PID control.

4. If no command was listed, the robot will read from the color sensor and send the computer
information regarding the vertex. The robot sends the color of the vertex as well as which
directions paths extend from this vertex (front, left, right) and the computer uses this infor-
mation to decide on the next series of moves for the robot to execute.

Major Technical Challenges

Color Sensor

One huge problem we encountered was that obtaining an accurate reading from the color sensor
took about one tenth of a second. We originally wanted to use the color sensor within the PID
loop to help us determine when we arrive at a door or intersection and stop the robot. However,
with the PID loop running hundreds of times each second, adding in the color sensor would slow
the PID loop so much that the robot could no longer consistently follow the lines. We did find that
measuring from the reflectance sensors took very little time and wouldn’t affect the PID controller’s
performance if included in the loop. Thus, we only used colored tape that the reflectance sensors
would read as equivalent to white, in our case red, blue, and yellow. This way, when the reflectance
sensors detects a dead end ahead, we can stop and use the color sensor to detect the color before
telling the computer what type of intersection we stopped at.

Bluetooth

Another problem we encountered was that when the robot was far from the laptop, data packets
transmitted between the two would occasionally be lost and take extra time to arrive. Because the
laptop uses the time between data packets from the robot to determine path lengths during the
mapping phase, this would sometimes result in incorrectly drawn maps. As a result, we’ve had to
make sure the laptop is close enough to the robot to prevent many lost packets. In a real world
situation, however, this would not be an issue, as the computer would be on board the robot and
wireless communication would not be necessary.

Reflectance Sensors

We’ve had a lot of issues with the reflectance sensors not reading intersections correctly. The robot
would sometimes detect a path where there was none, and would occasionally drive off the maze
without being able to correct itself and make its way back. Another problem we’ve had was that it

7



would sometimes not pick up a path where there was one. If this occurred in the mapping phase,
this would sometimes result in unexplored sections of the map. This problem was not particularly
difficult to solve. It ended up involving tedious tweaking of reflectance thresholds to make sure the
sensors could properly detect intersections in various lighting conditions.

Summary of Results

The robot was able to completely traverse a small maze, and the computer could map out the
maze properly. The optimal path code worked both within maze exploration and maze navigation,
including when doors were discovered to be closed.

Figure 5: Larger maze

However, the maze exploration could not be done on bigger mazes such as that in Figure 5.
Because larger mazes had to be made from multiple posterboards taped together, black tape layed
along where posterboards were joined needed to be cut down the middle. This would cause faulty
readings to come from the reflectance sensors while the robot drove over the tape, causing the
robot to drive off the map. Improvements in the code to measure from the reflectance sensors or
restricting maze constructions so that tape doesn’t run along gaps in the posterboards would allow
the robot to traverse bigger mazes.

Team

Nolan Wagener

Nolan was in charge of the code on the laptop. The code for mapping out and navigating through
the maze was his responsibility. Nolan was responsible for creating the GUI for user interaction as
well. UCS search code was adapted from work in CS188. Finally, Nolan added code to the laptop
and the mbed to handle calibration of and color classification from the color sensor.

8



Kyle Chiang

Kyle was in charge of the code on the robot. The PID and maze traversal code was his responsibility.
Making sure the controller was robust and that the robot could navigate the maze in different
lighting conditions was also his responsibility. The low level slave code was provided by Pololu.

Shared Responsibilities

Responsibilities for obtaining and adding hardware onto the m3pi were shared. Creation of the
mazes as well as testing all of the code was also done together.

Relation to Class

Concurrency

While only a single process was run on each processor, we did have critical sections where code on
the computer and mbed needed to be run in a specific order, such as when a new edge was being
explored. The robot would send a message to the computer saying that it was about to explore a
new edge. The computer would wait until it received another message, this time signifying that
the robot found a new vertex. Using the amount of time between the messages, the robot could
infer the length of the edge the robot traversed. The third message from the robot would contain
information about the intersection or the color of the vertex.

Modal Behavior

While the individual states in the maze following code were not clearly labeled, the robot transitions
between specific states to reliably navigate the maze.

Real-Time Networks

The mbed on the m3pi communicates with the laptop in real time over a Bluetooth connection.

Feedback

Information about serial communication and how to code around them was very useful when we
dealt with the Bluetooth communication. As well, labs that focused on the iRobot Create helped
to prepare us on how to program the m3pi.

Acknowledgments

We would like to thank the following people:

• Professors Lee and Seshia for giving us the opportunity to work on this project and providing
helpful information from lab and lectures that aided us in the completion of the project,

• Skot Croshere for providing us with materials and guidance with how to get started with
them,

• Pololu for providing an AVR Library for the ATmega328 slave code,

9



• the mbed.org community, specifically Jon Marsh for PID code for the m3pi and Michael
Walker for code to measure the RGB-Clear channels of the S371 color sensor,

• the CS 188 staff for giving us the code framework to be able to find optimal paths in our
maze, and

• Garvit Juniwal for offering to be a mentor and providing moral support when no other mentor
was available.

10


