
MACHINE LEARNING FOR AGILE ROBOTIC CONTROL

A Dissertation
Presented to

The Academic Faculty

By

Nolan Wagener

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

Georgia Institute of Technology

December 2023

© Nolan Wagener 2023

MACHINE LEARNING FOR AGILE ROBOTIC CONTROL

Thesis committee:

Dr. Byron Boots, Advisor
School of Computer Science & Engineer-
ing
University of Washington

Dr. Panagiotis Tsiotras, Co-Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Sehoon Ha
School of Interactive Computing
Georgia Institute of Technology

Dr. Seth Hutchinson
School of Interactive Computing
Georgia Institute of Technology

Dr. Andreas Krause
Department of Computer Science
ETH Zürich

Date approved: November 16, 2023

People say to me, “Are you looking for the ultimate laws of physics?” No, I’m not. I’m

just looking to find out more about the world, and if it turns out there is a simple, ultimate

law which explains everything, so be it; that would be very nice to discover. If it turns out

it’s like an onion with millions of layers, and we’re just sick and tired of looking at the

layers, then that’s the way it is.

Richard Feynman

For my parents, grandparents, and brother

ACKNOWLEDGMENTS

First and foremost, I would like to thank Byron Boots for being an incredible advisor.

He took a chance on me when he was a new professor at Georgia Tech, and, despite all the

pressure that comes with being a tenure-track professor, he gave me the freedom to work

on whatever topic I chose. I greatly appreciate his patience and advice he has given me

over the years. Even after moving to the University of Washington, he continued to support

me as an advisor and jumped through hoops to keep me funded even though I stayed at

Georgia Tech.

I also want to thank Panos Tsiotras for taking me on as a co-advisor after Byron changed

universities. He always took an interest in my work (even if it was a bit outside of his

research scope), gave me intriguing advice and insight from a controls perspective, and

showed patience in me over the years.

I’d like to thank the other members of my committee, Sehoon Ha, Seth Hutchinson, and

Andreas Krause, for their support and insight throughout the thesis process.

Being a member of the Robot Learning Lab has been an absolute pleasure. My col-

leagues in this lab are incredibly talented yet easygoing, and they have been invaluable for

bouncing off ideas or venting when experiments weren’t working. I’d like to thank: Ching-

An Cheng, Xinyan Yan, Mustafa Mukhadam, Amirreza Shaban, Sasha Lambert, Yuxiang

Yang, Rosario Scalise, Jacob Sacks, Anqi Li, Mohak Bhardwaj, Sandesh Adhikary, Ivan

Rodriguez, Aravind Battaje, Hemanth Sarabu, Nathan Hatch, Jing Dong, Siddarth Srini-

vasan, and Asif Rana.

The AutoRally project was a groundbreaking and awesome project to be a part of,

and I’d like to thank the colleagues that I worked with: Brian Goldfain, Grady Williams,

Paul Drews, Evangelos Theodorou, Kelsey Hawkins, Jason Gibson, Keuntaek Lee, Jacob

Knaup, Sahit Chintalapudi, and Anthony Liu. I would like to especially thank Brian, Grady,

and Paul for on-boarding me onto the project and for all their help when I began conducting

v

my own test runs.

The SARA and DARPA RACER projects are challenging and ambitious projects, and

my colleagues on these projects made them a pleasure to work on. These colleagues in-

clude: Nathan Hatch, Matthew Schmittle, Tyler Han, Jakub Filipek, Alex Spitzer, Greg

Okopal, and Gilwoo Lee.

My internship at Microsoft Research (MSR) was an intellectually stimulating and a

great joy. I’d like to thank my colleagues from the Robotics Group at MSR: Matthew

Hausknecht, Ching-An Cheng, Andrey Kolobov, Ricky Loynd, and Felipe Vieira Frujeri.

I’d like to especially thank Matthew for being an awesome mentor and for giving me the

freedom to approach the internship project in whatever way I wished.

Fridays with the CPL Drinks happy hour group have been phenomenal. It has allowed

me to kick back for relaxing and fun evenings. I’d like to thank the friends I’ve made in the

group: Brian Goldfain, Daniel Henderson, Kate Bennett, Walter Hooper, Linda Yang, Brian

Hrolenok, Amrita Gupta, Kalesha Bullard, Ashley Kunkle, Shray Bansal, Jason Fernando,

Sarah Wiegreffe, Nihal Soans, María Santos, Jon Balloch, Andrew Price, Paul David, Vi-

vian Chu, Tesca Fitzgerald, and Kayla DesPortes.

I’d like to thank Kate Bennett and Davy for their continued love and support over the

past few years, especially during the thesis writing process.

Finally, I’d like to thank my parents and grandparents for supporting my education and

for giving me an upbringing that allowed me to reach this point.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xiii

List of Figures . xv

Summary . xx

Chapter 1: Introduction . 1

Chapter 2: Preliminaries . 5

2.1 Markov Decision Processes . 5

2.1.1 Discount Factors . 6

2.1.2 Receding Horizon Planning . 6

2.2 Concepts Related to Probability . 7

2.2.1 KL Divergence . 7

2.2.2 Importance Sampling . 7

I Model Predictive Control 8

Chapter 3: Preliminaries . 9

Chapter 4: Information-Theoretic Model Predictive Control for Model-Based
Reinforcement Learning . 11

vii

4.1 Introduction . 11

4.2 Model Predictive Control . 13

4.3 Information-Theoretic Control . 15

4.3.1 Objective Function . 15

4.3.2 KL Divergence Minimization . 16

4.3.3 Importance Sampling . 18

4.3.4 MPPI Algorithm . 21

4.4 MPC with Neural Network Dynamics . 21

4.4.1 Learning Neural Network Models 21

4.4.2 Practical Details . 24

4.5 Experimental Results . 25

4.5.1 Simulated Tasks . 25

4.5.2 Real-World AutoRally Task . 28

4.6 Conclusion . 32

Chapter 5: An Online Learning Approach to Model Predictive Control 34

5.1 Introduction . 34

5.2 An Online Learning Perspective on MPC 36

5.2.1 The MPC Problem Setup . 36

5.2.2 The Online Learning Perspective 38

5.3 A Family of MPC Algorithms Based on Dynamic Mirror Descent 41

5.3.1 Loss Functions . 43

5.3.2 Algorithms . 47

viii

5.3.3 Shift Model . 54

5.3.4 Extensions . 54

5.4 Related Work . 55

5.5 Experiments . 56

5.5.1 Cartpole . 56

5.5.2 AutoRally . 58

5.6 Conclusion . 64

II Reinforcement Learning 65

Chapter 6: Preliminaries . 66

6.1 Proximal Policy Optimization (PPO) . 67

6.2 Chance-Constrained Markov Decision Processes 68

6.2.1 Safe Reinforcement Learning . 69

Chapter 7: Safe Reinforcement Learning Using Advantage-Based Intervention . 71

7.1 Introduction . 71

7.2 Preliminaries . 74

7.2.1 Notation . 74

7.2.2 Safe Reinforcment Learning . 75

7.3 Method . 78

7.3.1 Advantage-Based Intervention . 80

7.3.2 Absorbing MDP . 85

7.3.3 Theoretical Analysis . 86

7.4 Related Work . 90

ix

7.5 Experiments . 91

7.5.1 Point Robot . 93

7.5.2 Half-Cheetah . 93

7.6 Conclusion . 94

Chapter 8: MoCapAct: A Multi-Task Dataset for Simulated Humanoid Control 95

8.1 Introduction . 96

8.2 Related Work . 98

8.3 The dm_control Humanoid Environment 100

8.4 MoCapAct Dataset . 101

8.4.1 Clip Snippet Experts . 101

8.4.2 Expert Rollouts . 104

8.5 Applications . 105

8.5.1 Multi-Clip Tracking Policy . 106

8.5.2 Motion Completion with GPT . 111

8.6 Discussion . 113

Chapter 9: Discussion . 114

Appendices . 120

Chapter A: System Descriptions for Part I . 121

A.1 Cartpole . 121

A.2 Quadrotor . 122

A.3 AutoRally . 123

x

Chapter B: Safe Reinforcement Learning Using Advantage-Based Intervention . 125

B.1 Missing Proofs . 125

B.1.1 Useful Lemmas . 125

B.1.2 Proof of Equivalent CMDP Formulation in Section 3.2 126

B.1.3 Proof for Intervention Rules in Section 3.3 127

B.1.4 Proof for Absorbing MDP in Section 3.3.3 136

B.2 Additional Discussion of SAILR . 147

B.2.1 Necessity of the Partial Property 147

B.2.2 Bias of SAILR . 148

B.3 Experimental Details . 149

B.3.1 Point Robot . 149

B.3.2 Half-Cheetah . 152

B.4 Ablations for Point Robot . 154

B.5 Varying Intervention Penalty for Half-Cheetah 155

Chapter C: MoCapAct: A Multi-Task Dataset for Simulated Humanoid Control 157

C.1 Dataset Documentation . 157

C.1.1 Clip Snippet Experts . 157

C.1.2 Expert Rollouts . 158

C.1.3 Hosting Plan . 160

C.2 Training Details . 161

C.2.1 Clip Snippet Experts . 161

C.2.2 Multi-Clip Tracking Policy . 163

xi

C.2.3 Transfer for Reinforcement Learning 164

C.2.4 Motion Completion with GPT . 166

C.3 More Results . 167

C.3.1 Clip Snippet Experts . 167

C.3.2 Multi-Clip Tracking Policy . 170

References . 173

xii

LIST OF TABLES

4.1 Layer sizes and activations of models . 24

4.2 Training statistics . 32

4.3 Testing statistics . 32

5.1 Loss functions considered for DMD-MPC 43

5.2 Statistics for real-world experiments at target of 9 m/s. 60

5.3 Statistics for real-world experiments at target of 11 m/s. 62

8.1 Snippet expert results on the MoCap snippets within dm_control. We dis-
able the Gaussian noise for πc when computing these results. 102

8.2 Multi-clip results on the MoCap snippets, showing the mean and standard
deviation over three seeds. For evaluation, we disable the Gaussian noise
for πdec but keep the stochasticity for πenc. 108

8.3 Returns for the transfer tasks, showing the mean and standard deviation
over five seeds. 110

8.4 Motion completion statistics on the MoCap snippets. 112

A.1 Parameters for cartpole . 122

A.2 Cost function settings for AutoRally experiments. 124

C.1 Hyperparameters for clip snippet expert training. 162

C.2 Hyperparameters for multi-clip tracking policy training. 163

xiii

C.3 Hyperparameters for RL transfer tasks. 165

C.4 Hyperparameters for GPT training. 166

C.5 Clip expert results on the MoCap snippets within dm_control using the
stochastic πc. 168

xiv

LIST OF FIGURES

4.1 Aggressive driving with MPPI and neural network dynamics. 12

4.2 Toy example illustrating an optimal distribution from Eq. (4.2). Here, we
have Ĉt(ût) = 4(ût − 4)4, pt(ût) = N (ût; 0, 1), and λ = 1. 16

4.3 Normalized state costs of executed cartpole trajectories. The cost is nor-
malized so that the ground-truth MPPI controller has a cost of 1. Average
costs are computed from ten trials. Note the logarithmic scale and that
relative costs are clamped to a maximum of 100. 26

4.4 Left: Normalized state costs of executed quadrotor trajectories. The costs
are normalized so that the controller with the ground-truth model has a cost
of 1, the cost is bounded at 2. There are five trials per iteration. Right:
Example run through the virtual obstacle field, units are in meters. 27

4.5 Multi-step prediction error for cart position and pendulum angle 28

4.6 Experimental setup at the Georgia Tech Autonomous Racing Facility. . . . 29

4.7 Top: Multi-step prediction error on AutoRally dynamics, the vertical bar
denotes the planning horizon. Bottom: Actual trajectory vs. predicted tra-
jectory sequence. The prediction is made off-line from an initial condition
and executed control sequence that was observed while running the MPC
algorithm. Orientation markers are evenly spaced in time. 30

4.8 Trajectory traces and speeds during training runs (top) and more aggressive
testing runs (bottom). Direction of travel is counter-clockwise. 31

5.1 A simple example of the shift operator Φ. Here, the control distribution π̂θ
consists of a sequence of H = 5 independent Gaussian distributions. The
shift operator moves the parameters of the Gaussians one time step forward
and replaces the parameters at h = 4 with some default parameters. 38

5.2 Diagram of the online learning perspective. 39

xv

5.3 Visualization of different utilities. 45

5.4 Varying step size α and number of samples K (same legends for (a) and
(b)). Threshold utility Eq. (5.12) uses elite fraction = 10−3. Exponential
utility Eq. (5.14) uses λ = 1. 57

5.5 Varying loss parameter and step size (K = 1000). 57

5.6 AutoRally car. 58

5.7 Simulated AutoRally task. 59

5.8 Simulated AutoRally performance with different step sizes and number of
samples. Though many samples coupled with large steps yield the smallest
lap times, the performance gains are small past K = 1920 samples. With
fewer samples, a lower step size helps recover some lost performance. . . . 59

5.9 Simulated car speeds when optimizing the exponential utility (Eq. (5.14)).
The speeds and trajectories are very similar at step size 0.5, irrespective of
the number of samples. At step size 1, though, 64 samples result in capri-
cious maneuvers and low speeds, whereas 3840 samples result in smooth
driving at high speeds. 61

5.10 Simulated car speeds when optimizing the expected cost (Eq. (5.8)). All
tested step sizes result in low speeds. At too low or too high of a step size,
the car will drive along the wall or crash into it. 61

5.11 Real-world AutoRally task. 62

5.12 Real-world car speeds with K = 1920 samples and target of 9 m/s. 63

5.13 Real-world car speeds with K = 64 samples and target of 9 m/s. 63

5.14 Real-world car speeds withK = 64 samples and target of 11m/s. In Fig. 5.14a,
note the crash and U-turn at the top of the plot as well as the wider spread
of the paths throughout the whole track. By contrast, in Fig. 5.14b, the
resulting paths are more consistent, and there are no failure points. 63

6.1 Absorbing property of Sunsafe . 68

xvi

7.1 Advantage-based intervention of SAILR and construction of the surrogate
MDP M̃. In M, whenever the policy π proposes an action a which is
disadvantageous (w.r.t. a backup policy µ) in terms of safety, µ intervenes
and guides the agent to safety (green path). From the perspective of π, it
transitions to an absorbing state s† and receives a penalizing reward of −1. . 72

7.2 A simple example of the construction of M̃ from M using advantage-
based intervention given by some G = (Q̄, µ, η). In M, the transitions are
deterministic, and the blue arrows correspond to actions given by µ. The
edge weights correspond to Q̄, and G can be verified to be σ-admissible
when σ = 0.25 and γ = 0.9. The surrogate MDP M̃ is formed upon
intervention with η = 0.05. The transitions 1 → 2 and 1 → 3 are replaced
with transitions to the absorbing state s†. 86

7.3 Results of SAILR and baseline CMDP-based methods. Overall, SAILR
dramatically reduces the amount of safety constraint violations while still
having large returns at deployment. Plots in a row share the same leg-
end. All error bars are ±1 standard deviation over 10 (point robot) or 8
(half-cheetah) random seeds. Any curve not plotted in the third column
corresponds to zero safety violations. 92

8.1 The MoCapAct dataset includes expert policies that are trained to track in-
dividual clips. A dataset of noise-injected rollouts (containing observations
and actions) is then collected from each expert. These rollouts can subse-
quently be used to, for instance, train a multi-clip or GPT policy. 97

8.2 The humanoid displaying a variety of motions from the CMU MoCap dataset.100

8.3 Clip expert results on the MoCap snippets within dm_control. 103

8.4 Visualizations of clip experts. The top two rows show episodes (first: walk-
ing, second: cartwheel) where the expert (bronze humanoid) closely tracks
the corresponding MoCap clip (grey humanoid). The bottom row shows a
clip where the expert and MoCap clip differ in behavior. The MoCap clip
demonstrates a 360-degree jump, whereas the expert jumps without spinning.104

8.5 Policies used in the applications. 105

8.6 Performance of RWR-trained multi-clip policy. 108

8.7 Training curves for transfer tasks. All experiments use five seeds. 110

8.8 Episode lengths of GPT on MoCap snippets. 112

xvii

8.9 PCA projections of action sequences of length 32 from experts and GPT. . . 112

B.1 A simple example illustrating a non-partial intervention. Edge weights cor-
respond to rewards. If c† < 1/γ, the optimal policy in M̃′ will always go
into the intervention set. 147

B.2 The point environment. The black dot corresponds to the agent, the green
circle to the desired path, and the red lines to the constraints on the horizon-
tal position. The vertical constraints are outside of the visualized environment.149

B.3 The half-cheetah environment. The green circle is centered on the link
of interest, and the white double-headed arrow denotes the allowed height
range of the link. 152

B.4 Ablations for point robot experiment . 155

B.5 Varying intervention penalty for half-cheetah experiment. Here, c† = −R̃. . 156

C.1 Lengths of clips and snippets. 161

C.2 Snippet expert training curves on MoCap dataset. 167

C.3 Scatter plot of experts’ performance versus the snippet length. Here, the
Gaussian noise of the experts is disabled. The performance appears to be
independent of snippet length. 168

C.4 Noisy expert results on the MoCap snippets within dm_control. The noisy
experts incur a small performance drop from their deterministic counterparts.168

C.5 Scatter plot of noisy experts’ performance versus the snippet length. There
is a minor decrease in performance as the snippet length increases. 169

C.6 Multi-clip policy training curves on MoCap snippets. 170

C.7 Comparison of multi-clip policy’s performance when varying the autore-
gressive parameter α for the prior distribution p(zt|zt−1). Here, we use the
RWR-weighting scheme. Performance is broadly similar for both values of
α. 170

C.8 Scatter plot of the multi-clip policy’s performance versus the snippet length.
Here, the Gaussian noise of the policy is disabled. Longer snippets tend to
result in lower episode lengths. 171

xviii

C.9 Scatter plot of the multi-clip policy’s performance versus the clip length.
Here, the Gaussian noise of the low-level policy is disabled. Longer clips
tend to result in lower episode rewards and lengths. 172

xix

SUMMARY

Roboticists typically exploit structure in a problem, such as by modeling the mechan-

ics of a system, to generate solutions for a given task. However, this structure can limit

flexibility and require practitioners to reason about challenging phenomena, such as con-

tacts in mechanics. Data, conversely, provides much more flexibility and, when combined

with deep neural networks, has given rise to powerful models in vision and language, all

with little hand-engineered structure. While it is tempting to fully forego structure in favor

of learning-based methods for robotics, we show how data and learning can be gracefully

incorporated in a structured way. In particular, we focus on the control setting, and we

demonstrate that robotic control offers a variety of modes where learning and data can be

utilized. First, we show that data can be used in a model-based fashion to train a neu-

ral network that approximates complex dynamics and which can be used within a model

predictive controller (MPC). Then, we show that the MPC process is itself an instance of

online learning and demonstrate how to synthesize MPC algorithms from a common on-

line learning algorithm. We apply both of the aforementioned approaches on a real-world

aggressive driving task and show that they can accomplish the task. Next, we consider the

safe reinforcement learning problem and show that safety interventions can be used as a

learning signal to have an agent learn to become safe without needing to execute unsafe

actions in the environment. Finally, we consider the simulated humanoid domain and show

that pre-collected human motions can act as a strong inductive bias to ground motions

learned by the humanoid agent.

xx

CHAPTER 1

INTRODUCTION

As a field, robotics combines many different domains under one common umbrella: me-

chanical design, control, planning, perception, and so on. Despite the imposing scale of

combining all these domains, roboticists can create robotic systems that perform well in

the real world (Urmson et al., 2008). To do this, they take advantage of the inherent struc-

ture of the problem: using the perception system to understand the environment and get

a state estimate of the robot, and then feeding that environment representation and state

estimate to a planner to devise a valid plan through the environment, and finally feeding

that plan to a controller to compute controls that track the plan.

Traditionally, this reliance on structure has extended to the sub-domains of robotics

themselves, such as, in mechanics, by directly deriving the equations of motion from first

principles (Craig, 2022) or, in perception, by extracting hand-specified features from an im-

age (Lowe, 2004). These hand-engineered approaches and inductive biases allow for easier

understanding of a system and quicker generation of a solution. Nonetheless, this rigid

structure provides less flexibility, and it can require the practitioner to model challenging

phenomena, such as contact and sliding in mechanics and differentiating pedestrians from

the surrounding area in vision.

Data, however, provides much more flexibility. Because data is a reflection of phe-

nomena from the environment, we can use it to form higher fidelity models, such as using

system identification (Ljung, 1987). More broadly, machine learning (Bishop, 2006), the

field of study concerned with learning models from data, offers an appealing way to gener-

ate structures that normally would be hand-engineered. Modern machine learning, specifi-

cally deep learning (LeCun, Bengio, et al., 2015), has used deep neural networks and vast

amounts of data to produce state-of-the-art models in computer vision (Krizhevsky et al.,

1

2012), language (Brown et al., 2020; OpenAI, 2023), and challenging games like Go (Sil-

ver et al., 2016). In particular, these neural networks take the high-dimensional inputs (like

images) and extract their own learned features to aid in making a prediction. Therefore,

given some task, we imagine that, with enough data, we can train a neural network to

accomplish this task.

Unfortunately, we cannot naively transfer this idea to robotics (Kober, Bagnell, et al.,

2013; Roy et al., 2021; Sünderhauf et al., 2018). We have much less data available in

robotics, and the data is usually of lower quality (e.g., corrupted by sensor noise) or doesn’t

have clear supervision labels (e.g., what the proper action is). Furthermore, unlike standard

machine learning, a trained model is not evaluated on some held-out “test set,” but is instead

deployed into an embodied world. Because of this, a robot’s actions alter the world, and

any mistakes made could lead the robot to a part of the world that it wasn’t trained on,

leading to compounding (and potentially catastrophic) errors (Ross et al., 2011). Thus, we

must instead strike a fine balance, taking advantage of known structure in the problem while

using learning and the limited data we have where they best work within this structure.

This dissertation focuses on the application of machine learning to robotic control. We

show that learning can be gracefully incorporated into the control structure and offers many

different modes for utilizing data. In particular, the dissertation centers around the follow-

ing statement:

Machine learning offers a rich variety of structured ways to utilize data for achieving

agile robotic motion.

We explore this notion in this thesis by:

• modeling off-road driving dynamics with neural networks for use with a model pre-

dictive controller (Chapter 4),

• re-examining model predictive control from the online learning perspective (Chap-

ter 5),

2

• using safety interventions as a learning signal for safe reinforcement learning (Chap-

ter 7), and

• leveraging human motions to ground learned robot motions (Chapter 8).

This dissertation is organized as follows. We first give preliminary material in Chapter 2

which is used throughout the document, including Markov decision processes and various

probability concepts. We then split the thesis into two parts: Part I on model predictive

control, and Part II on reinforcement learning.

Part I focuses on the application of machine learning to model predictive control (MPC).

We first give MPC-specific preliminary material in Chapter 3. Then, in Chapter 4, we show

how to use data-driven methods to learn dynamics models for control. In particular, we use

expressive neural networks to represent the dynamics, and we show that they can accurately

model nonlinear and complicated phenomena like sliding. We also derive the model pre-

dictive path integral (MPPI) algorithm, a sampling-based MPC method that can work with

general dynamics and objective functions. Combining MPPI with neural network dynam-

ics, we achieve performant control of several simulated systems and a real-world off-road

vehicle at high speeds. Next, in Chapter 5, we turn our attention to the MPC framework

itself. We show that there is a close connection between MPC and online learning, a frame-

work for analyzing online decision making. Through this lens, we frame MPC as an online

learning problem and propose a general MPC algorithm based on an algorithm from the

online learning setting. From there, we show that several well-known MPC algorithms

are special cases of this general online learning algorithm, and we discuss several design

parameters that are exposed as a result of this perspective.

Part II focuses on how data can be used as side information for reinforcment learn-

ing (RL). We first give RL-specific preliminary material in Chapter 6. Then, in Chapter 7,

we turn to the safe reinforcement setting, where we seek to optimize a policy while satisfy-

ing safety constraints throughout training. To ensure safety, we allow safety interventions

to happen (e.g., through a safety monitor). Our novel contribution is that the interventions

3

can be used as a learning signal for our policy to become safe. We propose a safe RL

algorithm that converts the intervention into a penalizing reward, and we give theoretical

guarantees that the learned policy will be both safe and performant, even when safety in-

terventions are disabled. Next, in Chapter 8, we show that human motion capture (MoCap)

data can be used to teach simulated embodied humanoids realistic motions. Using large-

scale reinforcement learning, we generate an embodied dataset corresponding to 3.5 hours

of human motion covering a wide variety of behaviors. With this dataset, we bootstrap the

behaviors of simulated humanoids to speed up learning for downstream tasks, and we train

a GPT-style policy to perform motion completion.

In Chapter 9, we summarize the main contributions of this thesis and discuss directions

for future research.

Finally, the appendices give extra proofs and details for the main material.

4

CHAPTER 2

PRELIMINARIES

2.1 Markov Decision Processes

We consider a Markov decision process (MDP) M = (S,A, r, p), which gives a mathe-

matical description for how an agent interacts with an environment (Puterman, 1994). An

MDP consists of the following:

• S: the state space, with an element s ∈ S corresponding to a state. The state is a

summary of the system’s configuration that is sufficient for making predictions about

the system.

• A: the action space, with an element a ∈ A corresponding to an action.

• r : S ×A → R: the reward function.

• p : S ×A → ∆(S): the transition kernel, which maps the current state s and current

action a to a probability distribution over successive states s′.

The decision rule for choosing action a at state s is given by a stochastic policy π : S →

∆(A). Given some distribution p0(s0) of initial states, we define τ = (s0, a0, s1, a1, . . .) as

a trajectory and ρπ(τ) as the trajectory distribution under π, where:

ρπ(τ) ≜ p0(s0)
∞∏
t=0

π(at|st)p(st+1|st, at).

Our goal is to find a policy π that maximizes the average reward:

max
π

lim
T→∞

Eρπ(τ)

[
1

T

T−1∑
t=0

r(st, at)

]
(2.1)

5

This is a very difficult problem to solve, so many methods solve an approximation of

it. We briefly cover two paradigms.

2.1.1 Discount Factors

Here, we introduce a discount factor γ ∈ [0, 1), which encodes an “effective horizon” for

the problem. Then, the objective function is to maximize the expected sum of discounted

rewards:

max
π

Eρπ(τ)

[∞∑
t=0

γtr(st, at)

]
(2.2)

In this paradigm, the MDP definition usually includes the discount factor, so that M =

(S,A, r, p, γ).

2.1.2 Receding Horizon Planning

Here, we instead compute optimal actions on the fly by planning over a finite horizon. We

introduce a planning horizonH ∈ N, and we define τ̂t = (ŝt, ât, . . . , ŝt+H−1, ât+H−1, ŝt+H)

as a lookahead trajectory at time step t. We define π̂t ∈ ∆(AH) as an open-loop lookahead

policy. Given our system is at state st at time step t, we define the lookahead trajectory

distribution ρ̂π̂t as:

ρ̂π̂t(τ̂t | ŝt = st) = π̂t(ât, . . . , ât+H−1)
H−1∏
h=0

p(ŝt+h+1|ŝt+h, ât+h).

Under this formulation, we optimize the following problem at each time step t (and

corresponding state st):

max
π̂t

Eρ̂π̂t (τ̂t|ŝt=st)

[
H−1∑
h=0

r(ŝt+h, ât+h) + rterm(ŝt+H)

]
(2.3)

where rterm a terminal reward function. For example, the terminal reward can be designed

to estimate rewards past the planning horizon.

6

Let π̂⋆t be the optimizer. For control, we then sample an action sequence (ât, . . . , ât+H−1)

from π̂⋆t and set at = ât (i.e., perform action ât).

2.2 Concepts Related to Probability

2.2.1 KL Divergence

For probability distributions p and q over a common random variable x satisfying

q(x) = 0 =⇒ p(x) = 0, the KL divergence is defined as:

KL(p(x) ∥ q(x)) = Ep(x)
[
log

p(x)

q(x)

]
. (2.4)

Intuitively, the KL divergence measures the distance between p and q. It’s important to note,

however, that it is not a metric since it is not necessarily symmetric, i.e., KL(p(x) ∥ q(x)) ̸=

KL(q(x) ∥ p(x)), in general. One important property of the KL divergence is that it is

always non-negative and is zero if and only if p = q.

2.2.2 Importance Sampling

Importance sampling is a Monte Carlo technique which allows for estimating an expec-

tation under one distribution while sampling from a different distribution. Given some

function f and distributions p and q satisfying q(x) = 0 =⇒ p(x)f(x) = 0, we have the

following:

Ep(x)[f(x)] = Eq(x)
[
p(x)

q(x)
f(x)

]
≈ 1

K

K∑
k=1

p(xk)

q(xk)
f(xk) (x1, . . . , xK

iid∼ q). (2.5)

By properly setting q, we can get lower variance estimates of Ep(x)[f(x)] by sampling from

q instead of p.

7

Part I

Model Predictive Control

8

CHAPTER 3

PRELIMINARIES

First, we make the following modifications to the notation established in Section 2.1 to be

more in line with notation commonly used in the model predictive control community:

• We use X for the state space and x for the state. We also assume that X ⊆ Rn for

some n ∈ N.

• We use the terms control space and control in place of action space and action, re-

spectively. We also use U to denote control space and u to denote controls. We

assume that U ⊆ Rm for some m ∈ N.

• We use the term cost in place of reward. We also use c to denote a cost function. In

general, a cost function is treated as the negative of a given reward function.

For purposes of clarity, when involving planning horizons, we use lightface to denote

variables that are meant for a single time step and boldface to denote variables congregated

across the planning horizon. For example, we use ût to denote the planned action at time

step t and ût ≜ (ût, . . . , ût+H−1) to denote an H-step planned control sequence starting

from time step t. We use a subscript to extract elements from a congregated variable. For

example, we use ût,h to denote the hth element in ût. Note that the subscript index starts

from zero, meaning that ût,h = ût+h.

As opposed to maximizing the average reward as given by Eq. (2.1), we instead seek to

minimize the average cost:

min
π

lim
T→∞

Eρπ(τ)

[
1

T

T−1∑
t=0

c(xt, ut)

]
. (3.1)

One other modification we will make is that we assume access to an approximate tran-

9

sition kernel p̂ that models the true transition kernel p, i.e., p̂ ≈ p. Given some state xt

and control sequence ût = (ût, . . . , ût+H−1) ∈ U (where U ≜ UH), we shall find it useful

to reason about the predicted distribution of future states x̂t ≜ (x̂t, . . . , x̂t+H) based on p̂,

which is defined as:

p̂(x̂t | x̂t = xt, ût) ≜
H−1∏
h=0

p̂(x̂t+h+1 | x̂t+h, ût+h). (3.2)

Given this rollout distribution, we define the rollout cost Ĉt at time step t under the

control sequence ût as:

Ĉt(ût) = Ĉ(xt, ût) ≜ Ep̂(x̂t|x̂t=xt,ût)

[
H−1∑
h=0

c(x̂t+h, ût+h) + cterm(x̂t+H)

]
, (3.3)

where cterm is a terminal cost function, analagous to the terminal reward function from

Eq. (2.3).

10

CHAPTER 4

INFORMATION-THEORETIC MODEL PREDICTIVE CONTROL FOR

MODEL-BASED REINFORCEMENT LEARNING

We introduce an information-theoretic model predictive control (MPC) algorithm capable

of handling complex cost criteria and general nonlinear dynamics. The generality of the ap-

proach makes it possible to use multi-layer neural networks as dynamics models, which we

incorporate into our MPC algorithm in order to solve model-based reinforcement learning

tasks. We test the algorithm in simulation on a cartpole swing-up and quadrotor naviga-

tion task, as well as on actual hardware in an aggressive driving task. Empirical results

demonstrate that the algorithm is capable of achieving a high level of performance and

does so only utilizing data collected from the system. A video of the aggressive driving

experiments is available at https://www.youtube.com/watch?v=f2at-cqaJMM.

4.1 Introduction

Many robotic tasks can be phrased as reinforcement learning (RL) problems, where a robot

seeks to optimize a cost function encoding a task by utilizing data collected from the sys-

tem. The types of reinforcement learning problems encountered in robotic tasks are fre-

quently continuous state-action and high dimensional (Kober, Bagnell, et al., 2013). The

methods for solving these problems are often categorized into model-free and model-based

approaches.

Model-free approaches to RL such as policy gradient methods have been successfully

applied to many challenging tasks (Peters and Schaal, 2006a; Benbrahim and Franklin,

1997; Kober and Peters, 2008; Kormushev et al., 2010; Peters and Schaal, 2006b; Peters

and Schaal, 2008b; Peters and Schaal, 2008a; E. Theodorou et al., 2010; Buchli et al.,

2011; Stulp et al., 2012). These approaches typically require an expert demonstration to

11

https://www.youtube.com/watch?v=f2at-cqaJMM

Figure 4.1: Aggressive driving with MPPI and neural network dynamics.

initialize the learning process, followed by many interactions with the actual robotic sys-

tem. Unfortunately, model-free approaches often require a large amount of data from these

interactions, which limits their applicability. Additionally, while optimization of the initial

demonstrated policy leads to improved task performance, in the most popular gradient-

based appraches the resulting solution remains within the envelope of the initially demon-

strated policy. This limits the method’s ability to discover novel optimal control behaviors.

In the second paradigm, model-based RL approaches first learn a model of the system

and then train a feedback control policy using the learned model (Abbeel et al., 2010;

Schaal, 1996; C. G. Atkeson and Santamaria, 1997). Other techniques for model-based

reinforcement learning incorporate trajectory optimization with model learning (Mitrovic

et al., 2010) or disturbance learning (Morimoto and C. Atkeson, 2002). This means that

interactions with the robotic system must be performed at every iteration of the trajectory

optimization algorithm.

Despite all the progress on both model-based and model-free RL methods, generaliza-

tion remains a primary challenge. Robotic systems that operate in changing and stochastic

environments must adapt to new situations and be equipped with fast decision making pro-

cesses. Model predictive control (MPC) or receding horizon control tackles this problem

by relying on online optimization of the cost function and is one of the most effective ways

to achieve generalization for RL tasks. However, most variations of MPC rely on tools

12

from constrained optimization, which means that convexification (such as with quadratic

approximation) of the cost function and first- or second-order approximations of the dy-

namics are required.

A more flexible MPC method is model predictive path integral (MPPI) control, a sampling-

based algorithm which can optimize for general cost criteria, convex or not (Williams,

Drews, et al., 2016; Williams, Aldrich, et al., 2017; Gómez et al., 2016). However, in

prior work, MPPI could only be applied to systems with control affine dynamics. In this

paper, we extend the method so that it is applicable to a larger class of stochastic sys-

tems and representations. In particular, we demonstrate how the update law used in MPPI

can be derived through an information-theoretic framework, without making the control

affine assumption as done by Williams, Drews, et al. (2016). This is a significant step for-

ward because it enables a purely data-driven approach to model learning within the MPPI

framework. We use a multi-layer neural network to approximate the system dynamics and

demonstrate the ability of MPPI to perform difficult real-time control tasks using the ap-

proximate system model. We test the MPPI controller in simulation, using purely learned

neural network dynamics, on a simulated cartpole swing-up task and a quadrotor obstacle

navigation task. Simulation results demonstrate that the controller performs comparably to

an “ideal” MPPI controller, which we define as the MPPI controller which has access to the

actual simulation dynamics. To further demonstrate the practicality and effectiveness of the

approach, we demonstrate it on real hardware in an aggressive driving task with the Geor-

gia Tech AutoRally platform and obtain comparable results to MPPI with a hand-designed

physics-based vehicle model used by Williams, Drews, et al. (2016).

4.2 Model Predictive Control

The theory for model predictive control for linear systems is well understood and has many

successful applications in the process industry (Qin and Badgwell, 2003). For nonlinear

systems, MPC is an increasingly active area of research in control theory (Mayne, 2014).

13

Despite the progress in terms of theory and successful applications, most prior work on

MPC focuses on stabilization or trajectory tracking tasks. The key difference between

classical MPC and MPC for reinforcement learning is that RL tasks have more general

objectives beyond stabilization or tracking. The complexity of the objectives in RL tasks

increases the computational cost of the optimization, a major problem since optimization

must occur in real time. The most tractable approach to date is receding-horizon differ-

ential dynamic programming (Erez et al., 2013), which is capable of controlling complex

animated characters in realistic physics simulators, albeit using a ground truth model. The

fusion of learned system models with the type of generalized MPC necessary for solving

RL problems is a new area of research.

The information-theoretic MPC algorithm that we develop is originally based on path

integral control theory. In its traditional form, path integral control involves taking an ex-

ponential transform of the value function of an optimal control problem and then applying

the Feynman-Kac formula to express the solution to the Hamilton-Jacobi-Bellman partial

differential equation in terms of an expectation over all possible system paths. To make this

transformation, the dynamics must be affine in controls and satisfy a special relationship

between noise and controls. E. A. Theodorou and Todorov (2012) connect this approach

to the information-theoretic notions of free energy and relative entropy (also known as KL

divergence), which was then exploited by Williams, Drews, et al. (2016) to derive a slightly

generalized path integral expression. Here, we take this one step further, and completely

remove the control affine requirement. The resulting derivation and update law are closely

related to the cross-entropy method (W. Zhang et al., 2014), policy improvement with path

integrals (E. Theodorou et al., 2010), and reward-weighted regression (Peters and Schaal,

2007). Although those algorithms are geared towards updating the parameters of a feed-

back control policy, we focus on optimizing an open-loop control sequence for use with

MPC.

14

4.3 Information-Theoretic Control

In this section, we introduce the theoretical basis for our sampling-based MPC algorithm,

which relies on the concept of KL divergence drawn from information theory. The result

of the derivation is an expression for an optimal control law in terms of a weighted av-

erage over sampled trajectories. This leads to a gradient-free update law which is highly

parallelizable, making it ideal for online computation.

4.3.1 Objective Function

Suppose that at time step t the system is at state xt. Letting Ĉt be the rollout cost as defined

in Eq. (3.3), we seek a lookahead policy π̂t(ût) that optimizes the following objective:

min
π̂t

Eπ̂t(ût)[Ĉt(ût)] + λKL(π̂t(ût) ∥ pt(ût)), (4.1)

where pt(ût) is a given prior control distribution (e.g., zero mean Gaussian). The KL

divergence term attempts to keep the control distribution close to the prior and is a com-

mon regularization choice in the stochastic optimal control literature (E. A. Theodorou and

Todorov, 2012; Todorov, 2006; E. A. Theodorou, 2015). We can analytically solve this

problem by turning the objective into a KL divergence:

Eπ̂t(ût)[Ĉt(ût)] + λKL(π̂t(ût) ∥ pt(ût)) = Eπ̂t(ût)

[
Ĉt(ût) + λ log

π̂t(ût)

pt(ût)

]
= Eπ̂t(ût)

[
−λ log e−Ĉt(ût)/λ + λ log

π̂t(ût)

pt(ût)

]
= λEπ̂t(ût)

[
log

π̂t(ût)

pt(ût)e−Ĉt(ût)/λ

]
= λKL(π̂t(ût) ∥ 1

Zt
pt(ût)e

−Ĉt(ût)/λ)− λ logZt,

where Zt =
∫
U
pt(û)e

−Ĉt(û)/λ dû = Ept(û)[e−Ĉt(û)/λ] is a normalizer. The term −λ logZt
is a constant, so we can minimize the objective by making the two distributions in the KL

15

−6 −4 −2 0 2 4 6

0

5 Ĉt(ût)

−6 −4 −2 0 2 4 6

0

1

pt(ût)

e−Ĉt(ût)

−6 −4 −2 0 2 4 6

ût

0

1 π̂?t (ût) ∝ pt(ût)e
−Ĉt(ût)

µ̂?t = Eπ̂?t (ût)[ût]

Figure 4.2: Toy example illustrating an optimal distribution from Eq. (4.2). Here, we have
Ĉt(ût) = 4(ût − 4)4, pt(ût) = N (ût; 0, 1), and λ = 1.

divergence match. Therefore, the optimal lookahead policy π̂⋆t is:

π̂⋆t (ût) =
pt(ût)e

−Ĉt(ût)/λ

Ept(û)[e−Ĉt(û)/λ]
. (4.2)

A simple 1-D example of an optimal policy is shown in Fig. 4.2.

However, it is intractable to sample from this policy, and approximate sampling tech-

niques such as Markov chain Monte Carlo methods (Brooks et al., 2011) are too slow for

the control setting.

4.3.2 KL Divergence Minimization

Instead of trying to sample from π̂⋆t , we consider a simpler class of lookahead policies and

find the one closest to the optimal lookahead policy. In particular, we consider a lookahead

policy π̂µt(ût) paramaterized by µ̂t ∈ RHm which defines a Gaussian distribution with

fixed covariance Σ ≻ 0, i.e., π̂µ̂t(ût) = N (ût; µ̂t,Σ). We then find the mean µ̂t that

16

brings π̂µ̂t as close as possible to π̂⋆t in the sense of (forward) KL divergence:

min
µ̂t

KL(π̂⋆t (ût) ∥ π̂µ̂t(ût)). (4.3)

One may recognize this objective as the maximum likelihood over the class of Gaussian

distributions. Using a classic result from statistics and machine learning (Wainwright and

Jordan, 2008; Murphy, 2012), we conclude that our Gaussian’s mean should match that of

the optimal lookahead policy. In other words, µ̂t = Eπ̂⋆
t (ût)[ût] optimizes Eq. (4.3). For

completeness, we derive this result in full by expanding the KL divergence from Eq. (4.3):

KL(π̂⋆t (ût) ∥ π̂µ̂t(ût)) = Eπ̂⋆
t (ût)

[
log

π̂⋆t (ût)

π̂µ̂t(ût)

]
= Eπ̂⋆

t (ût)[− log π̂µ̂t(ût)] + constant

= Eπ̂⋆
t (ût)

[
1

2
(ût − µ̂t)

TΣ−1(ût − µ̂t)

]
+ constant

= Eπ̂⋆
t (ût)

[
1

2
µ̂T
tΣ

−1µ̂t − µ̂T
tΣ

−1ût

]
+ constant

=
1

2
µ̂T
tΣ

−1µ̂t − µ̂T
tΣ

−1 Eπ̂⋆
t (ût)[ût] + constant

=
1

2
(Eπ̂⋆

t (ût)[ût]− µ̂t)
TΣ−1(Eπ̂⋆

t (ût)[ût]− µ̂t) + constant.

Since Σ−1 is positive definite, this function is minimized at µ̂⋆
t = Eπ̂⋆

t (ût)[ût].

However, while we have found the optimal form of our Gaussian distribution, comput-

ing this mean requires either integrating over U or sampling from π̂⋆t , both of which are

intractable. We can take advantage of the form of π̂⋆t (Eq. (4.2)) to get a more appealing

17

expression of the mean:

µ̂⋆
t = Eπ̂⋆

t (ût)[ût]

=

∫
U
π̂⋆t (ût) ût dût

=

∫
U
pt(ût)e

−Ĉt(ût)/λ ût dût∫
U
pt(ût)e

−Ĉt(ût)/λ dût

=
Ept(ût)[e

−Ĉt(ût)/λ ût]

Ept(ût)[e
−Ĉt(ût)/λ]

. (4.4)

Thus, we can estimate µ̂⋆
t by sampling K sequences û1

t , . . . , û
K
t from pt(ût) and using

empirical expectations in Eq. (4.4):

µ̂⋆
t ≈

K∑
k=1

e−Ĉt(ûk
t)/λ ûkt

K∑
k=1

e−Ĉt(ûk
t)/λ

(û1
t , . . . , û

K
t

iid∼ pt). (4.5)

We recognize this as a “softmin” over the rollout costs to find the best trajectory. Thus,

with enough samples from pt, we can imagine that there will be some sample ûk
⋆

t with

low rollout cost Ĉt(ûk
⋆

t) that will therefore be given a large softmin weight. However, if pt

does not cover low-cost areas, then most samples will have large rollout costs. Referring

to the toy example in Fig. 4.2, note that the low-cost region lies in the tail of pt so that

it’s sampled with very low probability. This causes the estimate from Eq. (4.4) to have

high variance, thus requiring an enourmous number of samples from pt to get an accurate

estimate (Williams, Aldrich, et al., 2017).

4.3.3 Importance Sampling

One powerful technique for estimating an expectation is importance sampling (Section 2.2.2),

a Monte Carlo technique where we sample from a different distribution and modulate the

18

samples by probability ratios. Given some distribution qt(ût), we have the following ex-

pression for µ̂⋆
t after applying importance sampling to Eq. (4.4):

µ̂⋆
t =

Eqt(ût)

[
pt(ût)
qt(ût)

e−Ĉt(ût)/λ ût

]
Eqt(ût)

[
pt(ût)
qt(ût)

e−Ĉt(ût)/λ
] . (4.6)

We make the practical choice for qt to be the Gaussian distribution π̂µ̂t we are already using

and solve Eq. (4.3) to have a low variance estimate of µ̂⋆
t . In practice, because we can only

approximate Eq. (4.6) via sampling, we opt to instead improve our mean µ̂t towards µ̂⋆
t .

So by setting qt = π̂µ̂t , we have

µ̂⋆
t =

Eπ̂µ̂t
(ût)

[
pt(ût)
π̂µ̂t

(ût)
e−Ĉt(ût)/λ ût

]
Eπ̂µ̂t

(ût)

[
pt(ût)
π̂µ̂t

(ût)
e−Ĉt(ût)/λ

] . (4.7)

Now, we instantiate our prior distribution pt(ût) to be a Gaussian with covariance Σ,

i.e., pt(ût) = N (ût;µt,Σ) for some µt ∈ RmH . Under this choice of prior, the importance

sampling weight is:

pt(ût)

π̂µ̂t(ût)
=

exp(−1
2
(ût − µt)

TΣ−1(ût − µt))

exp(−1
2
(ût − µ̂t)TΣ−1(ût − µ̂t))

= exp
(
(µt − µ̂t)

TΣ−1ût +
1
2
µ̂T
tΣ

−1µ̂t − 1
2
µT
tΣ

−1µt

)
.

Therefore, the mean is:

µ̂⋆
t =

Eπ̂µ̂t
(ût)[e

−Ĉt(ût)/λ+(µt−µ̂t)TΣ−1ût+
1
2
µ̂T

tΣ
−1µ̂t− 1

2
µT

tΣ
−1µt ût]

Eπ̂µ̂t
(ût)[e

−Ĉt(ût)/λ+(µt−µ̂t)TΣ−1ût+
1
2
µ̂T

tΣ
−1µ̂t− 1

2
µT

tΣ
−1µt]

=
Eπ̂µ̂t

(ût)[e
−(Ĉt(ût)+λ(µ̂t−µt)TΣ−1ût)/λ ût]

Eπ̂µ̂t
(ût)[e

−(Ĉt(ût)+λ(µ̂t−µt)TΣ−1ût)/λ]
,

where we cancel out e
1
2
µ̂T

tΣ
−1µ̂t− 1

2
µT

tΣ
−1µt in the second line since it is a constant. For

19

clarity, we define Ĉ ′
t(ût) ≜ Ĉt(ût) + λ(µ̂t − µt)

TΣ−1ût, so that:

µ̂⋆
t =

Eπ̂µ̂t
(ût)[e

−Ĉ′
t(ût)/λ ût]

Eπ̂µ̂t
(ût)[e

−Ĉ′
t(ût)/λ]

.

Thus, by sampling K sequences û1
t , . . . , û

K
t from π̂µ̂t , we get the following approxi-

mation:

µ̂⋆
t ≈

K∑
k=1

e−Ĉ
′
t(û

k
t)/λ ûkt

K∑
k=1

e−Ĉ
′
t(û

k
t)/λ

(û1
t , . . . , û

K
t

iid∼ π̂µ̂t)

=
K∑
k=1

wkû
k
t ,

where wk = e−Ĉ
′
t(û

k
t)/λ
/∑K

ℓ=1 e
−Ĉ′

t(û
ℓ
t)/λ . Thus, we have an iterative scheme to improve

some given mean µ̂t to one that is closer to the optimal µ̂⋆
t .

Prior Distribution

It’s also important to touch on the choice of mean µt for the prior distribution pt. Two

example choices are:

• µt = 0: Under this choice of prior mean, the update becomes:

µ̂⋆
t =

Eπ̂µ̂t
(ût)[e

−(Ĉt(ût)+λµ̂T
tΣ

−1ût)/λ ût]

Eπ̂µ̂t
(ût)[e

−(Ĉt(ût)+λµ̂T
tΣ

−1ût)/λ]
. (4.8)

The underlying optimal control problem (Eq. (4.1)) seeks to regularize µ̂⋆
t towards

zero.

• µt = µ̂t: Under this choice of prior mean, the update becomes:

µ̂⋆
t =

Eπ̂µ̂t
(ût)[e

−Ĉt(ût)/λ ût]

Eπ̂µ̂t
(ût)[e

−Ĉt(ût)/λ]
. (4.9)

20

In particular, this update does not use importance sampling, and the underlying op-

timal control problem (Eq. (4.1)) seeks to keep µ̂⋆
t close to the previous solution µ̂t.

In light of this, we call Eq. (4.9) the proximal MPPI update rule.

4.3.4 MPPI Algorithm

We present two versions of computing the rollout cost Ĉt: one with a deterministic tran-

sition model (Algorithm 1) and another with a stochastic transition model (Algorithm 2).

When using a deterministic transition model (i.e., x̂t+1 = f̂(x̂t, ût) for some function f̂),

the corresponding transition distribution p̂ is a Dirac delta function, so we only need to

query the model once for each sample ûkt . When using a stochastic transition model p̂, we

must estimate Ĉt(ût) via Monte Carlo, i.e., by propagating ûkt through the model L times

and taking an empirical average of the rollout cost.

We give the pseudocode for MPPI in Algorithm 3. For the rest of this chapter (including

the experiments), we opt for a deterministic transition model (Algorithm 1) and the update

rule in Eq. (4.8).

4.4 MPC with Neural Network Dynamics

To deploy Algorithm 3, we need a model to sample from. In the model-based RL setting,

this means learning a model from data. In this section, we describe our learning procedure

and the real-time implementation of MPPI.

4.4.1 Learning Neural Network Models

The kinematics for our systems of interest are trivial given the velocities, so we need only

learn the acceleration of each system. Specifically, given that the state x is partitioned as

x = (q, q̇), where q is the configuration of the system and q̇ is its time derivative, we seek

21

Algorithm 1: Rollout cost
(deterministic model)

Given: x: Initial state for rollout
û = (û0, . . . , ûH−1): Control seq.
f̂ : Deterministic transition model
c: Step cost function
cterm: Terminal cost function

Set x̂0 = x.
Set x̂h+1 = f̂(x̂h, ûh) for h = 0, . . . ,H − 1.
Set Ĉ =

∑H−1
h=0 c(x̂h, ûh) + cterm(x̂H).

return Ĉ

Algorithm 2: Rollout cost
(stochastic model)

Given: x: Initial state for rollout
û = (û0, . . . , ûH−1): Control seq.
p̂: Stochastic transition model
L: Number of samples from p̂
c: Step cost function
cterm: Terminal cost function

for ℓ = 1, . . . , L do
Set x̂ℓ

0 = x.
Sample x̂ℓ

h+1 ∼ p̂(x̂ℓ
h, ûh) for

h = 0, . . . ,H − 1.
Set Ĉℓ =

∑H−1
h=0 c(x̂ℓ

h, ûh) + cterm(x̂
ℓ
H).

end
Set Ĉ = 1

L

∑L
ℓ=1 Ĉℓ.

return Ĉ

Algorithm 3: Model predictive path integral (MPPI)

Given: Ĉ: Rollout cost function (Algorithm 1 or Algorithm 2)
K: Number of sampled control sequences
H: Number of planning timesteps
Σ: Sampling covariance
λ: Temperature

Initialize û = (û0, . . . , ûH−1) (e.g., all zeros).
while task not completed do

Set x to be system’s state.
Set u to be the prior mean for this time step. (Section 4.3.3)
for k = 1, . . . , K do

Sample ûk ∼ N (û,Σ).
Set Ck = Ĉ(x, ûk) + λ(û− u)TΣ−1ûk.

end
Set wk = e−Ck/λ

/∑K
ℓ=1 e

−Ck/λ for k = 1, . . . , K.

Set û =
∑K

k=1wkûk.
Set u = û0 and send u to control system.
Shift control sequence û = (û0, . . . , ûH−1) forward one time step.

end

22

Algorithm 4: MPPI with dynamics model training
Input: task

N : Iterations
M : Trials per iteration

Set D to be a dynamics dataset collected from bootstrap data (or empty if there’s
no bootstrap data).

for i = 1, . . . , N do
Set f̂ to be dynamics model trained on D.
for j = 1, . . . ,M do

Collect dynamics dataset Dj by applying MPPI with model f̂ to the task.
Aggregate Dj into D.

end
end

a function q̈(x, u) so that the full state transition is:

xt+1 = f(xt, ut) =

 qt + q̇t∆t

q̇t + q̈(xt, ut)∆t

,
where ∆t is a discrete time increment. We approximate q̈ with a neural network ˆ̈q and train

it on a dataset of state-control-acceleration triplets D = {(xt, ut, q̇t+1−q̇t
∆t

)}t using minibatch

gradient descent with the RMSprop optimizer (Tieleman and Hinton, 2012).

To create a dataset for learning the model, we follow a two-phase approach. In the

first phase, we collect system identification data and then train the neural network. For

simulation data, the MPPI controller with the ground truth model is run, whereas a human

driver is used in real-world experiments. The ability to collect a bootstrapping dataset in

this manner is one of the main benefits of model-based RL approaches: they can use data

collected from any interaction with the system since the dynamics do not usually depend

on the algorithm controlling the system or the task being performed. In the second phase,

we repeatedly run the MPPI algorithm with the neural network model, augment the dataset

from the system interactions, and re-train the neural network using the augmented dataset.

In some cases, the initial dataset is enough to adequately perform the task. This procedure

23

is shown in Algorithm 4.

We perform this procedure using a range of neural network sizes in order to determine

the effect of network configuration on control performance. Table 4.1 describes the network

configurations that we use in our simulations and experiments.

Table 4.1: Layer sizes and activations of models

System Layer 1 Size Layer 2 Size Activation
cartpole 16 16 tanh
cartpole 32 32 tanh
cartpole 64 64 tanh

quadrotor 16 16 tanh
quadrotor 32 32 tanh
quadrotor 64 64 tanh
AutoRally 32 32 tanh

4.4.2 Practical Details

In MPC, optimization and execution take place simultaneously: a control sequence is com-

puted, and then the first element of the sequence is executed. This process is repeated using

the un-executed portion of the previous control sequence as the importance sampling tra-

jectory for the next iteration. The key requirement for sampling-based MPC is to produce

a large number of samples in real time. As with Williams, Drews, et al. (2016), we perform

sampling in parallel on an Nvidia GPU using custom-written and highly optimized CUDA

kernels.

The use of neural networks as models makes sampling in real-time considerably more

involved because forward propagation of the network can be expensive, and this operation

must be performedKH times. For example, the dynamics model for the AutoRally vehicle

by Williams, Drews, et al. (2016) consists of 100 parameters and a single matrix multiply,

whereas the neural network model that we learn for the AutoRally task has 1412 parameters

and consists of successive large matrix multiplications and non-linearities. To make this

tractable we take advantage of the parallel nature of neural networks and further parallelize

24

the algorithm by using multiple CUDA threads per trajectory sample.

4.5 Experimental Results

We tested our approach both in simulation and in a real-world aggressive driving task. For

all our experiments, the sampling covariance has the form Σ = diag(Σ, . . . ,Σ) for some

m ×m covariance matrix Σ. This corresponds to using temporally independent Gaussian

distributions.

4.5.1 Simulated Tasks

In simulation, we tested our approach on a cartpole swing-up and quadrotor navigation

task. In these simulated scenarios, a convenient benchmark is the MPPI algorithm with

access to the ground-truth model used for the simulation. This provides a metric for how

much performance is lost using an approximate model of the system.

Cartpole Swing-Up

In this task, the controller has to swing and hold a pendulum upright using only actuation

on the attached cart, starting with the pendulum oriented downwards. The full system

definition is given in Section A.1. We set the system noise to Σ = 0.92 and the temperature

to λ = 1. The bootstrapping dataset for the cartpole comes from 5 minutes of multiple

MPPI demonstrations using known dynamics but a different cost function for the swing-up

task. These system identification trajectories show the cartpole’s behavior when the pole is

upright, but they don’t exhaust enough of the state-action space for the MPPI controller to

act correctly immediately. The cartpole is of low enough dimensionality that no bootstrap

dataset is required to perform the task, though at the cost of more training iterations. The

relative trajectory costs are shown in Fig. 4.3, where each iteration consists of one 10

second trial.

25

2 4 6 8 10 12 14 16

Iteration

100

101

102

N
or

m
al

iz
ed

st
at

e
co

st
of

ca
rt

po
le

tra
je

ct
or

y

Known dynamics
16, not bootstrapped
32, not bootstrapped
64, not bootstrapped
16, bootstrapped
32, bootstrapped
64, bootstrapped

Figure 4.3: Normalized state costs of executed cartpole trajectories. The cost is normalized
so that the ground-truth MPPI controller has a cost of 1. Average costs are computed from
ten trials. Note the logarithmic scale and that relative costs are clamped to a maximum of
100.

Quadrotor Navigation

For this task, a quadrotor must fly from one corner of a field to the other while avoiding

circular obstacles. The system and problem description are given in Section A.2. We set the

temperature to λ = 1 and the sampling covariance to Σ = diag(2.52, 0.252, 0.252, 0.252),

where the 2.52 value corresponds to the thrust input. We found that running the algo-

rithm without bootstrapping the neural network dynamics resulted in repeated failures. We

bootstraped the neural network with 30 minutes of an MPPI demonstration with known

dynamics and a moving target but no obstacles.

All network models yield similar results, as shown in Fig. 4.4. The bootstrap data is

enough for the MPPI controller with the medium-sized network to navigate the field. How-

ever, the smallest and largest networks require an extra iteration to become competent at the

task. After one iteration, the algorithm achieves the same level of performance regardless

of which network is being used. An example trajectory successfully navigating the field is

also shown in Fig. 4.4.

26

5 10 15 20
Iteration

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

st
at

e
co

st

Known dynamics
16, bootstrapped
32, bootstrapped
64, bootstrapped

0 10 20 30 40 50
0

10

20

30

40

50

Figure 4.4: Left: Normalized state costs of executed quadrotor trajectories. The costs are
normalized so that the controller with the ground-truth model has a cost of 1, the cost is
bounded at 2. There are five trials per iteration. Right: Example run through the virtual
obstacle field, units are in meters.

Multi-Step Error

We trained the neural network dynamics on one-step prediction error, which does not nec-

essarily result in accurate multi-step prediction. In the worst case, compounding multi-step

errors can grow exponentially (Venkatraman et al., 2015). The multi-step error over the

prediction horizon for cartpole is shown in Fig. 4.5. For cartpole dynamics, the smaller,

bootstrapped networks perform best. Note that the worst performers on multi-step error for

the cartpole directly correlate with the the worst performers on the swing-up task, as one

would expect.

None of the networks for the quadrotor dynamics perform significantly better or worse

in multi-step error, which is reflected in the near identical performance of the MPPI con-

troller with each of the three networks. The final positional and orientation errors after the

2.5 second prediction horizon are approximately 1.5 meters and 0.4 radians, respectively.

Mitigating the build up of model error is a primary challenge in model-based RL. MPC

has two characteristics which help in this regard. The first is that it only requires a short

time horizon, and the second is that it constantly recomputes the planned control sequence.

The final performance margins for both the cartpole and quadrotor are within 10% of what

27

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
ar

tp
os

iti
on

R
M

S
er

ro
r(

m
) 16, not bootstrapped

32, not bootstrapped
64, not bootstrapped
16, bootstrapped
32, bootstrapped
64, bootstrapped

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
nd

ul
um

an
gl

e
R

M
S

er
ro

r(
ra

d)

Figure 4.5: Multi-step prediction error for cart position and pendulum angle

can be achieved with perfect model knowledge, which indicates that, in this case, our MPC

algorithm is robust to these errors.

4.5.2 Real-World AutoRally Task

We applied our approach to the task of aggressively driving around a dirt track with the

Georgia Tech AutoRally vehicle (Goldfain et al., 2019). In prior work, Williams, Drews,

et al. (2016) successfully applied MPPI to this task using a physics-inspired model. In our

experiments, we used a neural network in place of this hand-designed model.

Bootstrapping Dataset

To train an initial model, we collected a system identification dataset of approximately 30

minutes of human-controlled driving at speeds varying between 4 and 10 m/s. The driving

demonstrations are broken into five distinct behaviors:

1. normal driving at low speeds (4–6 m/s)

2. zig-zag maneuvers performed at low speeds (4–6 m/s),

28

Figure 4.6: Experimental setup at the Georgia Tech Autonomous Racing Facility.

3. linear acceleration maneuvers which consist of accelerating the vehicle as much as

possible in a straight line, and then braking before starting to turn,

4. sliding maneuvers where the pilot attempts to slide the vehicle as much as possible,

and

5. high speed driving where the pilot simply tries to drive the vehicle around the track

as fast as possible.

Each one of these maneuvers was performed for three minutes while moving around the

track clockwise and for another three minutes moving counter-clockwise.

Experimental Setup

The experiments took place at the Georgia Tech Autonomous Racing Facility (Fig. 4.6).

This facility consists of an elliptical dirt track approximately 3 meters wide and 30 meters

across at its furthest point. We provided the MPPI controller with a global map of the

track in the form of a cost-map grid. This cost-map is a smoothed occupancy grid with

values of 0 corresponding to the center of the track and which increases to 1 as we move

to the boundaries of the track. The cost-map values are 1 for terrain that is outside of

the boundaries. The cost-map grid has a 10-centimeter resolution and is stored in CUDA

texture memory for efficient look-ups inside the optimization kernel. The AutoRally system

and task descriptions are given in Section A.3.

29

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
A

bs
ol

ut
e

E
rr

or
(m

)

X
Y

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

n
A

bs
ol

ut
e

E
rr

or
(r

ad
)

Heading

−14 −12 −10 −8 −6 −4 −2 0

X Position

−10

−8

−6

−4

−2

0

2

4

Y
Po

si
tio

n

Predicted Trajectory
Actual Trajectory

Figure 4.7: Top: Multi-step prediction error on AutoRally dynamics, the vertical bar de-
notes the planning horizon. Bottom: Actual trajectory vs. predicted trajectory sequence.
The prediction is made off-line from an initial condition and executed control sequence that
was observed while running the MPC algorithm. Orientation markers are evenly spaced in
time.

We used a neural network with 2 hidden layers of 32 neurons each and hyperbolic

tangent non-linearities. The MPPI controller used a time horizon of 2.5 seconds, a control

frequency of 40 Hz (so that H = 100 time steps), and K = 1200 samples every time-step.

This corresponds to 4.8 million forward passes through the neural network every second.

We performed on-board computation using an Nvidia GTX 750 Ti GPU, which has 640

CUDA cores.

During training, we set the slip angle threshold to 15.8◦ (0.275 rad), and for the fi-

nal testing runs we raised it to 21.5◦ (0.375 rad). The sampling covariance is Σ =

diag(0.452, 0.52). During training, we set the desired speed to 9 m/s (20 mph) and then

gradually raised it to 13 m/s (29 mph) for the final testing run. For collecting statistics, we

define a trial as 3 laps around the track starting from a full stop. Each training/test iteration

consisted of three separate trial runs.

Results

With training settings of 9 m/s and 0.275 rad, the controller successfully maneuvered the

vehicle around the track using the model only trained on the demonstrated system identi-

30

−20

−15

−10

−5

0

5

Y-
Po

si
tio

n
(m

)

Under 5.5 m/s
5.5 - 7.0 m/s
Over 7.0 m/s

−15 −10 −5 0 5 10 15

X-Position (m)

−20

−15

−10

−5

0

5

Y-
Po

si
tio

n
(m

)

Figure 4.8: Trajectory traces and speeds during training runs (top) and more aggressive
testing runs (bottom). Direction of travel is counter-clockwise.

fication data. We performed 5 iterations, each consisting of 3 trials, for a total of 45 laps

around the track. This corresponds to slightly over 8 minutes of total run-time.

Adding new data into the training set and re-training the neural network model did not

noticeably improve the performance of MPPI. One explanation for this is that the initial

dataset was deliberately collected for system identification and consisted of a variety of

maneuvers meant to excite various modes of the dynamics. This is in contrast to the simu-

lated experiments where the initial dataset consisted of a single task repeatedly performed

by an expert controller.

After the training runs, we tested the limits of the MPPI controller, using the model

from the final training iteration. Specifically, we increased the threshold for penalized slip

angle and the desired speed. We started with the desired speed at 10 m/s and gradually

increase it to 13 m/s. At 13 m/s, the vehicle only completed two of three runs. At the

lower settings, it successfully completed all trials.

Fig. 4.8 shows the paths taken by the controller along with their velocity profiles. In

both cases, the vehicle slowed down coming into turns and accelerates out of them, even-

tually reaching a high speed along the middle of the straight. This is an intuitively obvious

strategy; however, it is worth noting that there is no portion of the cost function which ex-

31

Table 4.2: Training statistics

Iteration Avg. Lap (s) Best Lap (s) Top Speed (m/s) Max Slip Angle
1 10.98 10.50 8.13 22.1◦

2 10.79 10.32 7.84 27.4◦

3 11.05 10.55 8.00 33.5◦

4 10.85 10.43 7.60 25.8◦

5 11.11 10.84 7.49 22.6◦

Table 4.3: Testing statistics

Target Speed (m/s) Avg. Lap (s) Best Lap (s) Top Speed (m/s) Max Slip Angle
10 10.34 9.93 8.05 38.7◦

11 9.97 9.43 8.71 34.7◦

12 9.88 9.47 8.63 43.7◦

13 9.74 9.36 8.44 48.7◦

plicitly forces this behavior. Rather, this behavior emergered from the interaction between

the neural network dynamics and cost function.

Tables 4.2 and 4.3 show the statistics for the training and testing runs. The more aggres-

sive runs completed the trials in faster times and obtained a higher top speed and maximum

slip angle than the training runs. The velocity profiles of the training and test trials also

differed dramatically. In the conservative training runs, the vehicle hit its top speed in the

first half of the straight and immediately slowed down, eventually coasting into the corner.

In the aggressive setting, the vehicle maintained its speed all the way into the corner and

then power-slid through the turn (Fig. 4.1). This is demonstrated by the high slip angles

achieved by the more aggressive runs. The overall lap times in our experiments are slightly

faster than what Williams, Drews, et al. (2016) achieved previously.

4.6 Conclusion

We derived an information-theoretic version of model predictive path integral control which

generalizes previous interpretations by allowing for general dynamics. We exploited this

generalization by applying the MPPI algorithm in the context of model-based reinforce-

ment learning and used multi-layer neural networks to learn a dynamics model. In two

32

challenging simulation tasks, the controller with the learned neural network model achieved

performance within 10% of what is obtained with the ground-truth model.

We demonstrated the scalability and practicality of the algorithm on real hardware in

an aggressive driving scenario, where the algorithm successfully raced a one-fifth scale

rally car around a 30 meter long track at speeds over 8 m/s. In doing this, the controller

performed difficult controlled power-slides around corners. This success came despite the

presence of significant disturbances, such as deep grooves on portions of the track and

patches of very fine loose dirt which could have easily caused the vehicle to lose traction.

This type of model-based reinforcement learning that we propose, combining general-

ized model predictive control with machine learning approaches for learning dynamics, is

a promising new direction for solving the challenging problems that arise in robotics. The

key tools in this approach are the information-theoretic concept of KL divergence, scalable

machine learning algorithms for learning dynamics, and intensive parallel computation for

online optimization. The result of our approach is the emergence of complex behaviors,

such as power-sliding through turns when racing, that arise purely due to the interaction

between the optimization, cost function, and learned dynamics.

33

CHAPTER 5

AN ONLINE LEARNING APPROACH TO MODEL PREDICTIVE CONTROL

Model predictive control (MPC) is a powerful technique for solving dynamic control tasks.

In this chapter, we show that there exists a close connection between MPC and online

learning, an abstract theoretical framework for analyzing online decision making in the

optimization literature. This new perspective provides a foundation for leveraging power-

ful online learning algorithms to design MPC algorithms. Specifically, we propose a new

algorithm based on dynamic mirror descent (DMD), an online learning algorithm that is

designed for non-stationary setups. Our algorithm, Dynamic Mirror Descent Model Pre-

dictive Control (DMD-MPC), represents a general family of MPC algorithms that includes

many existing techniques as special instances. DMD-MPC also provides a fresh perspec-

tive on previous heuristics used in MPC and suggests a principled way to design new MPC

algorithms. In the experimental section of this chapter, we demonstrate the flexibility of

DMD-MPC, presenting a set of new MPC algorithms on a simple simulated cartpole and a

simulated and real-world aggressive driving task. Videos of the real-world experiments are

available at https://youtu.be/vZST3v0_S9w and https://youtu.be/MhuqiHo2t98.

5.1 Introduction

Model predictive control (MPC) (Mayne, 2014) is an effective tool for control tasks in-

volving dynamic environments, such as helicopter aerobatics (Abbeel et al., 2010) and

aggressive driving (Williams, Drews, et al., 2016). One reason for its success is the prag-

matic principle it adopts in choosing controls: rather than wasting computational power

to optimize a complicated controller for the full-scale problem (which may be difficult to

accurately model), MPC instead optimizes a simple controller (e.g., an open-loop control

sequence) over a shorter planning horizon that is just sufficient to make a sensible decision

34

https://youtu.be/vZST3v0_S9w
https://youtu.be/MhuqiHo2t98

at the current moment. By alternating between optimizing the simple controller and apply-

ing its corresponding control on the real system, MPC results in a closed-loop policy that

can handle modeling errors and dynamic changes in the environment.

Various MPC algorithms have been proposed, using tools ranging from constrained

optimization techniques (Camacho and Alba, 2013; Mayne, 2014; Tassa et al., 2014) to

sampling-based techniques (Williams, Drews, et al., 2018). In this chapter, we show that,

while these algorithms were originally designed differently, if we view them through the

lens of online learning (Hazan, 2016), many of them actually follow the same general up-

date rule. Online learning is an abstract theoretical framework for analyzing online decision

making. Formally, it concerns iterative interactions between a learner and an environment

over T rounds. At round t, the learner makes a decision θ̃t from some decision set Θ. The

environment then chooses a loss function ℓt based on the learner’s decision, and the learner

suffers a cost ℓt(θ̃t). In addition to seeing the decision’s cost, the learner may be given

additional information about the loss function (e.g., its gradient evaluated at θ̃t) to aid in

choosing the next decision θ̃t+1. The learner’s goal is to minimize the accumulated costs∑T
t=1 ℓt(θ̃t), e.g., by minimizing regret (Hazan, 2016).

We find that the MPC process bears a strong similarity with online learning. At time t

(i.e., round t), an MPC algorithm optimizes a controller (i.e., the decision) over some cost

function (i.e., the per-round loss). To do so, it observes the cost of the initial controller (i.e.,

ℓt(θ̃t)), improves the controller, and executes a control based on the improved controller in

the environment to get to the next state (which in turn defines the next per-round loss) with

a new controller θ̃t+1.

In view of this connection, we propose a generic framework, DMD-MPC (Dynamic

Mirror Descent Model Predictive Control), for synthesizing MPC algorithms. DMD-MPC

is based on a first-order online learning algorithm called dynamic mirror descent (DMD) (Hall

and Willett, 2013), a generalization of mirror descent (Beck and Teboulle, 2003) for dy-

namic settings. We show that several existing MPC algorithms (Williams, Wagener, et al.,

35

2017; Williams, Drews, et al., 2018) are special cases of DMD-MPC, given specific choices

of step sizes, loss functions, and regularization. Furthermore, we demonstrate how new

MPC algorithms can be derived systematically from DMD-MPC with only mild assump-

tions on the regularity of the cost function. This allows us to even work with discontinuous

cost functions (like indicators) and discrete controls. Thus, DMD-MPC offers a spectrum

from which practitioners can easily customize new algorithms for their applications.

In the experiments, we apply DMD-MPC to design a range of MPC algorithms and

study their empirical performance. Our results indicate the extra design flexibility offered

by DMD-MPC does make a difference in practice; by properly selecting hyperparameters

which are obscured in the previous approaches, we are able to improve the performance

of existing algorithms. Finally, we apply DMD-MPC on a real-world AutoRally car plat-

form (Goldfain et al., 2019) for autonomous driving tasks and show it can yield competent

performance, including achieving aggressive yet stable driving at high speeds even under

noisy control updates by properly setting the DMD-MPC hyperparameters.

5.2 An Online Learning Perspective on MPC

5.2.1 The MPC Problem Setup

In this chapter, we adopt the MPC approach to choosing ut: at state xt, we imagine con-

trolling a stochastic dynamics model p̂(x′|x, u) (which approximates our actual system

p(x′|x, u)) for H time steps into the future. Our planned controls come from a control

distribution π̂θ that is parameterized by some vector θ ∈ Θ, where Θ is the feasible pa-

rameter set. In each simulation (i.e., rollout), we sample a control sequence ût from the

control distribution π̂θ and then sample from the state sequence from the rollout distribution

p̂(x̂t | x̂ = xt, ût) (Eq. (3.2)). Through these simulations, we desire to select a parameter

θt ∈ Θ that minimizes an MPC objective Ĵ(θ;xt), which aims to predict the performance

36

of the system if we were to apply the control distribution π̂θ starting from xt.1 In other

words, we wish to find the parameter setting that solves

min
θ∈Θ

Ĵ(θ;xt). (5.1)

Once θt is decided, we then sample2 ût from π̂θ, extract the first control ût, and apply it

on the real dynamical system p(xt+1|xt, ut) (i.e., set ut = ût) to go to the next state xt+1.

Because θt is determined based on xt, MPC is effectively state-feedback.

The motivation behind MPC is to use the MPC objective Ĵ to reason about the controls

required to achieve desirable long-term behaviors. A popular MPC objective is:

Ĵ(θ;xt) ≜ Eπ̂θ(ût)[Ĉ(xt, ût)] = Eπ̂θ(ût) Ep̂(x̂t|x̂t=xt,ût)

[
H−1∑
h=0

c(x̂t+h, ût+h) + cterm(x̂t+H)

]
,

which estimates the future costs over H steps. Later, in Section 5.3.1, we will discuss

several MPC objectives and their properties.

Although the idea of MPC sounds intuitively promising, the optimization can only

be approximated in practice (e.g., using an iterative algorithm like gradient descent), be-

cause Eq. (5.1) is often a stochastic program (like the example above) and the control com-

mand ut needs to be computed at a high frequency. In consideration of this imperfection, it

is common to heuristically bootstrap the previous approximate solution as the initialization

to the current problem. Specifically, let θt−1 be the approximate solution to the previous

problem and θ̃t denote the initial condition of θ in solving Eq. (5.1). The bootstrapping

step can then written as

θ̃t = Φ(θt−1) (5.2)

1Ĵ can be seen as a surrogate for the long-term performance of our controller. Typically, we set the
planning horizon H to be much smaller than T to reduce the optimization difficulty and to mitigate modeling
errors.

2This setup can also optimize deterministic policies, e.g., by defining π̂θ to be a Gaussian policy with the
mean being the deterministic policy.

37

h = 0 h = 1 h = 2 h = 3 h = 4

h = 0 h = 1 h = 2 h = 3

π̂θ

π̂Φ(θ)

h = 4

Figure 5.1: A simple example of the shift operator Φ. Here, the control distribution π̂θ
consists of a sequence of H = 5 independent Gaussian distributions. The shift operator
moves the parameters of the Gaussians one time step forward and replaces the parameters
at h = 4 with some default parameters.

by defining a shift operator Φ that outputs a new parameter in Θ. This Φ can be cho-

sen to satisfy desired properties, e.g., π̂Φ(θt−1)(ût,h|ût−1) = π̂θt−1(ût−1,h+1|ût−1) for h =

0, . . . , H − 2. A simple example of this property is shown in Fig. 5.1. Note that ût also

involves a new control ût+H−1 that is not in ût−1, so the choice of Φ is not unique but algo-

rithm dependent. Because the subproblems in Eq. (5.1) of two consecutive time steps share

all control variables except for the first and the last ones, the “shifted” parameter Φ(θt−1)

to the current problem should be almost as good as the optimized parameter θt−1 is to the

previous problem. In other words, setting θ̃t = Φ(θt−1) provides a warm start to Eq. (5.1)

and amortizes the computational complexity of solving for θt.

5.2.2 The Online Learning Perspective

As discussed, the iterative update process of MPC resembles the setup of online learn-

ing (Hazan, 2016). Here, we provide the details to convert an MPC setup into an online

learning problem. Recall from the introduction that online learning mainly consists of three

38

xtxt−1 xt+1

ut−2 ut−1 ut

θ̃t−1 θt−1 θ̃t θt θ̃t+1 θt+1

ℓt−1 ℓt ℓt+1

round t− 1 round t round t+ 1

Φ Φ

learner

environment

Figure 5.2: Diagram of the online learning perspective.

components: the decision set, the learner’s strategy for updating decisions, and the envi-

ronment’s strategy for updating per-round losses. We show that MPC has counterparts that

correspond to each component.

We use the concept of per-round loss in online learning as a mechanism to measure the

decision uncertainty in MPC, and propose the following identification (shown in Fig. 5.2)

for the MPC setup described in the previous section: we set the rounds in online learning

to synchronize with the time steps of our control system, set the decision set Θ as the space

of feasible parameters of the control distribution π̂θ, set the learner as the MPC algorithm

which in round t outputs the decision θ̃t ∈ Θ and side information ut−1, and set the per-

round loss as

ℓt(·) ≜ Ĵ(· ;xt). (5.3)

In other words, in round t of this online learning setup, the learner plays a decision θ̃t along

with a side information ut−1 (based on the optimized solution θt−1 and the shift operator

in Eq. (5.2)), the environment selects the per-round loss ℓt(·) = Ĵ(·;xt) (by applying ut−1

to the real dynamical system to transit the state to xt), and finally the learner receives ℓt and

incurs cost ℓt(θ̃t) (which measures the sub-optimality of the future plan made by the MPC

algorithm).

This online learning setup differs slightly from the standard setup in its separation of the

39

decision θ̃t and the side information ut−1; while our setup can be converted into a standard

one that treats θt−1 as the sole decision played in round t, we adopt this explicit separation

in order to emphasize that the variable part of the incurred cost ℓt(θ̃t) pertains to only θ̃t.

That is, the learner cannot go back and revert the previous control ut−1 already applied on

the system, but only uses ℓt to update the current and future controls ût, . . . , ût+H−1.

The performance of the learner in online learning (which by our identification is the

MPC algorithm) is measured in terms of the accumulated costs
∑T

t=1 ℓt(θ̃t). For problems

in non-stationary setups, a normalized way to describe the accumulated costs in the online

learning literature is through the concept of dynamic regret (Hall and Willett, 2013; L.

Zhang et al., 2018), which is defined as

T∑
t=1

(ℓt(θ̃t)− ℓt(θ
⋆
t)), (5.4)

where θ⋆t ∈ argminθ∈Θ ℓt(θ). Dynamic regret quantifies how suboptimal the played deci-

sions θ̃1, . . . , θ̃T are on the corresponding loss functions. In our proposed problem setup,

the optimality concept associated with dynamic regret conveys a consistency criterion desir-

able for MPC: we would like to make a decision θt−1 at state xt−1 such that, after applying

control ut−1 and entering the new state xt, its shifted plan θ̃t remains close to optimal with

respect to the new loss function ℓt. If the dynamics model p̂ is accurate and the MPC al-

gorithm is ideally solving Eq. (5.1), we can expect that bootstrapping the previous solution

θt−1 through Eq. (5.2) into θ̃t would result in a small instantaneous gap ℓt(θ̃t) − ℓt(θ
⋆
t)

which is solely due to unpredictable future information (such as the stochasticity in the dy-

namical system). In other words, an online learning algorithm with small dynamic regret, if

applied to our online learning setup, would produce a consistently optimal MPC algorithm

with regard to the solution concept discussed above. However, we note that having small

dynamic regret here does not directly imply good absolute performance on the control sys-

tem, because the overall performance of the MPC algorithm is largely dependent on the

40

form of the MPC objective Ĵ (e.g., through choice ofH and accuracy of p̂). Small dynamic

regret more precisely means whether the plan produced by an MPC algorithm is consistent

with the given MPC objective.

5.3 A Family of MPC Algorithms Based on Dynamic Mirror Descent

The online learning perspective on MPC suggests that good MPC algorithms can be de-

signed from online learning algorithms that achieve small dynamic regret. This is indeed

the case. We will show that a range of existing MPC algorithms are in essence applications

of a classical online learning algorithm called dynamic mirror descent (DMD) (Hall and

Willett, 2013). DMD is an extension of mirror descent (Beck and Teboulle, 2003) to prob-

lems involving dynamic comparators (in this case, the (θ⋆t)t in dynamic regret in Eq. (5.4)).

In round t, DMD applies the following update rule:

θt = argmin
θ∈Θ

αgTt θ + Dψ(θ ∥ θ̃t)

θ̃t+1 = Φ(θt),

(5.5)

where gt = ∇ℓt(θ̃t) (which can be approximated by sampling if ∇ℓt(θ̃t) is an expec-

tation), Φ is called the shift model, α > 0 is the step size, and, for some θ,θ′ ∈ Θ,

Dψ(θ ∥θ′) ≜ ψ(θ)− ψ(θ′)−∇ψ(θ′)T(θ − θ′) is the Bregman divergence generated by

a strictly convex function ψ on Θ.

The first step of DMD in Eq. (5.5) is reminiscent of the proximal update in the usual

mirror descent algorithm. It can be thought of as an optimization step where the Breg-

man divergence acts as a regularization to keep θ close to θ̃t. Although Dψ(θ ∥θ′) is not

necessarily a metric (since it may not be symmetric), it is still useful to view it as a dis-

tance between θ and θ′. Indeed, familiar examples of the Bregman divergence include the

squared Euclidean distance and KL divergence (Eq. (2.4)) (Banerjee et al., 2005).

The second step of DMD in Eq. (5.5) uses the shift model Φ to anticipate the optimal

41

decision for the next round. In the context of MPC, a natural choice for the shift model is

the shift operator in Eq. (5.2) defined previously in Section 5.2.1 (hence the same notation),

because the per-round losses in two consecutive rounds here concern problems with shifted

time indices. Hall and Willett (2013) show that the dynamic regret of DMD scales with

how much the optimal decision sequence (θ⋆t)t deviates from Φ (i.e.,
∑

t∥θ⋆t+1 − Φ(θ⋆t)∥),

which arises from the unpredictable elements of the problem.

Algorithm 5: Dynamic Mirror Descent Model Predictive Control (DMD-MPC)
for t = 1, 2, . . . , T do

Set ℓt(·) = Ĵ(· ;xt).
Set gt = ∇ℓt(θ̃t) (or some estimate of ∇ℓt(θ̃t)).
Set θt = argmin

θ∈Θ
αgTt θ + Dψ(θ ∥ θ̃t).

Sample ût ∼ π̂θt(ût) and set ut = ût.
Sample xt+1 ∼ p(xt+1|xt, ut).
Set θ̃t+1 = Φ(θt).

end

Applying DMD in Eq. (5.5) to the online learning problem described in Section 5.2.2 leads

to an MPC algorithm shown in Algorithm 5, which we call DMD-MPC. More precisely,

DMD-MPC represents a family of MPC algorithms in which a specific instance is defined

by a choice of:

1. the MPC objective Ĵ in Eq. (5.3),

2. the form of the control distribution π̂θ, and

3. the Bregman divergence Dψ in Eq. (5.5).

Thus, we can use DMD-MPC as a generic strategy for synthesizing MPC algorithms. In the

following, we use this recipe to recreate several existing MPC algorithms and demonstrate

new MPC algorithms that naturally arise from this framework.

42

Table 5.1: Loss functions considered for DMD-MPC

Loss function ℓt(θ) Gradient weight wt(ût)

Expected cost Eπ̂θ(ût)[Ĉt(ût)] −Ĉt(ût)

Expected utility − logEπ̂θ(ût)[Ut(Ĉt(ût))]
Ut(Ĉt(ût))

Eπ̂θ̃t (û)[Ut(Ĉt(û))]

Expected threshold utility − logEπ̂θ(ût)[1{Ĉt(ût) ≤ Ct,max}]
1{Ĉt(ût) ≤ Ct,max}

Eπ̂θ̃t (û)[1{Ĉt(û) ≤ Ct,max}]

Expected exponential utility − logEπ̂θ(ût)[e
−Ĉt(ût)/λ]

e−Ĉt(ût)/λ

Eπ̂θ̃t (û)[e
−Ĉt(û)/λ]

5.3.1 Loss Functions

We discuss several definitions of the per-round loss ℓt, which all result from the formu-

lation in Eq. (5.3) but with different Ĵ . These loss functions are based on the statistic

Ĉ(xt, ût) (Eq. (3.3)) which measures the averageH-step accumulated costs of a given con-

trol trajectory ût starting from xt. For transparency of exposition, we will suppose hence-

forth that the control distribution π̂θ is open-loop3; similar derivations follow naturally for

closed-loop control distributions. For convenience of practitioners, we also provide expres-

sions of their gradients in terms of the likelihood-ratio derivative4 (Glynn, 1990). It turns

out that all these gradients will have the form

∇ℓt(θ̃t) = −Eπ̂θ̃t (ût)[wt(ût)∇θ log π̂θ̃t(ût)] (5.6)

for some function wt (Table 5.1). We approximate these gradients by sampling K se-

quences û1
t , . . . , û

K
t from π̂θ̃t and evaluating:

∇ℓt(θ̃t) ≈
1

K

K∑
k=1

wt(û
k
t)∇θ log π̂θ̃t(ût) (û1

t , . . . , û
K
t

iid∼ π̂θ̃t). (5.7)

3Note again that even while using open-loop control distributions, the overall control law of MPC is
state-feedback.

4We assume the control distribution is sufficiently regular with respect to its parameter so that the
likelihood-ratio derivative rule holds.

43

In practice, because wt involves expectations such as that in Ĉt (Eq. (3.3)), we must also

separately estimate wt via Monte Carlo.

Expected Cost

The most commonly used MPC objective is theH-step expected accumulated cost function

under model dynamics, because it directly estimates the expected long-term behavior when

the dynamics model p̂ is accurate and H is large enough. Its per-round loss function and

gradient are:5

ℓt(θ) = Eπ̂θ(ût)[Ĉt(ût)] (5.8)

∇ℓt(θ̃t) = Eπ̂θ̃t (ût)[Ĉt(ût)∇θ log π̂θ̃t(ût)]. (5.9)

Expected Utility

Instead of optimizing for average cost, we may care to optimize for some preference related

to the average trajectory cost Ĉt, such as having the cost be below some threshold. This

idea can be formulated as a utility that returns a normalized score related to the preference

for a given average trajectory cost Ĉt(ût). Specifically, suppose that Ĉt is lower bounded

by zero6 and at some round t define the utility Ut : R+ → [0, 1] to be a function with the

following properties:

• Ut(0) = 1,

• Ut is monotonically decreasing, and

• lim
C→∞

Ut(C) = 0.

These are sensible properties since we attain maximum utility when we have zero cost, the

utility never increases with the cost, and the utility approaches zero as the cost increases
5In experiments, we subtract the empirical average of the sampled costs from Ĉt in Eq. (5.9) to reduce the

variance, at the cost of a small amount of bias.
6If this is not the case, let Ĉmin ≜ infût

Ĉt(ût), which we assume is finite. We can then replace Ĉt(ût)
with Ĉt(ût)− Ĉmin.

44

0 1 2 3 4 5

C

0.00

0.25

0.50

0.75

1.00

U
t(
C

)
=

1
{C
≤
C
t,

m
ax
}

Increasing Ct,max

(a) Threshold utility

0 2 4

C

0.00

0.25

0.50

0.75

1.00

U
t(
C

)
=
e−

C
/λ

Increasing λ

(b) Exponential utility

Figure 5.3: Visualization of different utilities.

without bound. We then define the per-round loss as

ℓt(θ) = − logEπ̂θ(ût)[Ut(Ĉt(ût))] (5.10)

∇ℓt(θ̃t) = −
Eπ̂θ̃t (ût)[Ut(Ĉt(ût))∇θ log π̂θ̃t(ût)]

Eπ̂θ̃t (ût)[Ut(Ĉt(ût))]
. (5.11)

The gradient in Eq. (5.11) is particularly appealing when estimated with samples. Suppose

we sample K control sequences û1
t , . . . , û

K
t from π̂θ. Then, the estimate of Eq. (5.11) is a

convex combination of gradients:

∇ℓt(θ̃t) ≈ −
K∑
k=1

wk∇θ log π̂θ(û
k
t) (û1

t , . . . , û
K
t

iid∼ π̂θ̃t),

where wk = Ut(Ck)
/∑K

ℓ=1 Ut(Cℓ) and Ck = Ĉt(û
k
t) for k = 1, . . . , K. We see that each

weight wk is computed by considering the relative utility of its corresponding trajectory.

A cost Ck with high relative utility will push its corresponding weight wk closer to one,

whereas a low relative utility will cause wk to be close to zero, effectively rejecting the

corresponding sample.

We give two examples of utilities and their related losses.

Threshold Utility For example, we may care about the system being below some cost

threshold as often as possible. To encode this preference, we can use the threshold utility

45

Ut(C) ≜ 1{C ≤ Ct,max}, where 1{·} is the indicator function and Ct,max is a threshold

parameter. Under this choice, the loss and its gradient become

ℓt(θ) = − logEπ̂θ(ût)[1{Ĉt(ût) ≤ Ct,max}] (5.12)

= − logPπ̂θ(ût)(Ĉt(ût) ≤ Ct,max)

∇ℓt(θ̃t) = −
Eπ̂θ̃t (ût)[1{Ĉt(ût) ≤ Ct,max}∇θ log π̂θ̃t(ût)]

Eπ̂θ̃t (ût)[1{Ĉt(ût) ≤ Ct,max}]
. (5.13)

As we can see, this loss function also gives the probability of achieving cost below some

threshold. As a result (Fig. 5.3a), costs below Ct,max are treated the same in terms of the

utility. This can potentially make optimization easier since we are trying to make good

trajectories as likely as possible instead of finding the best trajectories as in Eq. (5.8).

However, if the threshold Ct,max is set too low and the gradient is estimated with sam-

ples, the gradient estimate may have high variance due to the large number of rejected

samples. Because of this, in practice, the threshold is set adaptively, e.g., as the largest cost

of the top elite fraction of the sampled trajectories with smallest costs (Botev et al., 2013).

This allows the controller to make the best sampled trajectories more likely and therefore

improve the controller.

Exponential Utility We can also opt for a continuous surrogate of the indicator function,

in this case the exponential utility Ut(C) ≜ e−C/λ, where λ > 0 is a scaling parameter. Un-

like the indicator function, the exponential utility provides nonzero feedback for any given

cost and allows us to discriminate between costs (i.e., if C1 > C2, then Ut(C1) < Ut(C2)),

as shown in Fig. 5.3b. Furthermore, λ acts as a continuous alternative to Ct,max and dictates

how quickly or slowly Ut decays to zero, which in a soft way determines the cutoff point

for rejecting given costs.

46

Under this choice, the loss and its gradient become

ℓt(θ) = − logEπ̂θ(ût)[e
−Ĉt(ût)/λ] (5.14)

∇ℓt(θ̃t) = −
Eπ̂θ̃t (ût)[e

−Ĉt(ût)/λ∇θ log π̂θ̃t(ût)]

Eπ̂θ̃t (ût)[e
−Ĉt(ût)/λ]

(5.15)

The loss function in Eq. (5.14) is also known as the risk-seeking objective in optimal

control (Broek et al., 2010); this classical interpretation is based on a Taylor expansion

of Eq. (5.14) showing

ℓt(θ) ≈
1

λ
Eπ̂θ(ût)[Ct(ût)]−

1

λ2
varπ̂θ(ût)(Ct(ût))

when λ is large, where varπ̂θ(ût)(Ct(ût)) is the variance of Ct(ût) under π̂θ. Here we

derive Eq. (5.14) from a different perspective that treats it as a continuous approximation

of Eq. (5.12). The use of exponential transformations to approximate indicators is a com-

mon machine learning trick, e.g., the Chernoff bound (Chernoff, 1952).

5.3.2 Algorithms

We instantiate DMD-MPC with different choices of loss function, control distribution, and

Bregman divergence as concrete examples to showcase the flexibility of our framework. In

particular, we are able to recover well-known MPC algorithms as special cases of Algo-

rithm 5.

Quadratic Divergence

We start with perhaps the most common Bregman divergence: the quadratic divergence.

Choosing ψ(θ) = 1
2
θTAθ for some positive definite matrix A, the resulting Bregman

divergence has the quadratic form Dψ(θ ∥θ′) ≜ 1
2
(θ − θ′)TA(θ − θ′). Then, the update

47

rule becomes:

θt = argmin
θ∈Θ

αgTt θ +
1

2
(θ − θ̃t)

TA(θ − θ̃t)

= argmin
θ∈Θ

(θ − θ⋆t)
TA(θ − θ⋆t)

where θ⋆t ≜ θ̃t−αA−1gt. Below we discuss different choices of A and their corresponding

update rules.

Projected Gradient Descent This basic update rule is a special case when A is the iden-

tity matrix. Equivalently, the update can be written as θt = argminθ∈Θ ∥θ− (θ̃t−αgt)∥2.

Natural Gradient Descent We can recover the natural gradient descent algorithm (Aki-

moto et al., 2012) by defining A = F(θ̃t), where

F(θ) ≜ Eπ̂θ(û)[∇θ log π̂θ(û)∇θ log π̂θ(û)
T]

is the Fisher information matrix. This rule uses the natural Riemannian metric of distribu-

tions to normalize the effects of different parameterizations of the same distribution (Rat-

tray et al., 1998).

KL Divergence and the Exponential Family

We show that for control distributions in the exponential family (Nielsen and Garcia, 2009),

the Bregman divergence in Eq. (5.5) can be set to the KL divergence, which is a natural

way to measure distances between distributions. Toward this end, we review the basics of

the exponential family. We say a distribution pη(x) with natural parameter η of random

variable x over some support X belongs to the exponential family if its probability function

satisfies pη(x) = b(x)eη
Tϕ(x)−A(η), where ϕ(x) is the sufficient statistics, b(x) is the carrier

48

measure, and A(η) is the log-partition function which satisfies

A(η) = log

∫
X
b(x)eη

Tϕ(x) dx.

The distribution pη can also be described by its expectation parameter ξ ≜ Epη(x)[ϕ(x)],

and there is a duality between the two parameterizations:

ξ = ∇A(η) and η = ∇A∗(ξ),

where A∗(ξ) = supη∈H ηTξ − A(η) is the Legendre transformation of A and H = {η :

A(η) <∞}. That is, ∇A = (∇A∗)−1. The duality results in the property below.

Fact 1. (Nielsen and Garcia, 2009) KL(pη(x) ∥ pη′(x)) = DA(η
′ ∥ η) = DA∗(ξ ∥ ξ′).

We can use Fact 1 to define the Bregman divergence (Eq. (5.5)) to optimize a control

distribution π̂θ in the exponential family:

• if θ is an expectation parameter, we can set Dψ(θ ∥ θ̃t) ≜ KL(π̂θ(û) ∥ π̂θ̃t(û)), or

• if θ is a natural parameter, we can set Dψ(θ ∥ θ̃t) ≜ KL(π̂θ̃t(û) ∥ π̂θ(û)).

We demonstrate some examples using this idea below.

Expectation Parameters and Categorical Distributions We first discuss the case where

θ is an expectation parameter and the first step in Eq. (5.5) is

θt = argmin
θ∈Θ

αgTt θ +KL(π̂θ(ût) ∥ π̂θ̃t(ût)). (5.16)

To illustrate, we consider an MPC problem with a discrete control space U = {1, 2, . . . ,m}

and use the categorical distribution as the control distribution. Though we can model the

full distribution over the planning horizon (i.e., each element corresponds to a control se-

quence from {1, . . . ,m}H), this would require mH parameters. This is intractable to rep-

49

resent for even moderate values of H , and the resulting estimate for gt would have large

variance. Instead, we model the distribution as a temporally independent sequence of cate-

gorical distributions, i.e.,

π̂θt(ût) =
H−1∏
h=0

π̂θt,h(ût,h),

where each π̂θt,h(ût,h) = Cat(ût,h; θt,h), θt,h ∈ ∆m is the probability of choosing each

control among {1, . . . ,m} at the hth predicted time step, and ∆m denotes the probability

simplex in Rm. With this representation, we have mH parameters, and each θt,h is an

expectation parameter of π̂θt,h that corresponds to the one-hot sufficient statistics

ϕ(ût,h) = (1{ût,h = 1}, . . . , 1{ût,h = m}).

With the structure of Eq. (5.6), the update direction is

gt,h = −Eπ̂θ̃t (ût)[wt(ût)ϕ(ût,h)⊘ θ̃t,h] (h = 0, 1, . . . , H − 1),

where ⊘ denotes elementwise division. The mirror descent update (Eq. (5.16)) then be-

comes the exponentiated gradient algorithm (Hazan, 2016; Kivinen and Warmuth, 1997):

θt,h =
1

Zt,h
θ̃t,h ⊙ e−αgt,h (h = 0, 1, . . . , H − 1), (5.17)

where Zt,h is the normalizer for θt,h, ⊙ denotes elementwise multiplication, and the ex-

ponentiation of the gradient is done elementwise. That is, instead of applying an additive

gradient step to the parameters, the update in Eq. (5.17) exponentiates the gradient and per-

forms elementwise multiplication. This does a better job of accounting for the geometry of

the problem, and makes projection be a simple operation of normalizing a distribution.

50

Natural Parameters and Gaussian Distributions Alternatively, we can set θ as a natu-

ral parameter and use

θt = argmin
θ∈Θ

αgTt θ +KL(π̂θ̃t(ût) ∥ π̂θ(ût)) (5.18)

as the first step in Eq. (5.5). In particular, we show that, with Eq. (5.18), the structure

of the likelihood-ratio derivative in Eq. (5.6) can be leveraged to design an efficient up-

date. The main idea follows from the observation that when the gradient is computed

through Eq. (5.6) and θ̃t is the natural parameter, we have

∇θ̃t
log π̂θ̃t(ût) = ϕ(ût)−∇A(θ̃t)

= ϕ(ût)− ξ̃t

so that the gradient gt is:

gt = ∇ℓt(θ̃t) = Eπ̂θ̃t(ût)
[wt(ût)(ξ̃t − ϕ(ût))]. (5.19)

We combine the factorization in Eq. (5.19) with a property of the proximal update below

to derive our algorithm.

Proposition 1. Let ξ̃t ∈ M and η̃t = ∇A∗(ξ̃t). Let gt be an update vector and M

be the image of H under ∇A. If ξ̃t − αgt ∈ M and we update the natural parameters

via ηt = argminη∈H αgTt η + DA(η ∥ η̃t), then the equivalent update for the expectation

parameters is ξt = ξ̃t − αgt.

51

Proof. We start by expanding the objective for ηt:

ηt = argmin
η∈H

αgTt η + DA(η ∥ η̃t)

= argmin
η∈H

αgTt η + A(η)−∇A(η̃t)Tη

= argmin
η∈H

(αgt − ξ̃t)
Tη + A(η)

= argmax
η∈H

(ξ̃t − αgt)
Tη − A(η).

Letting η′
t = ∇A∗(ξ̃t − αgt), the gradient of the objective evaluated at η = η′

t is:

ξ̃t − αgt −∇A(η′
t) = ξ̃t − αgt −∇A(∇A∗(ξ̃t − αgt))

= (ξ̃t − αgt)− (ξ̃t − αgt)

= 0.

Since the objective’s gradient at η′
t is zero and the objective is concave, we conclude that

η′
t maximizes the objective, so that ηt = η′

t = ∇A∗(ξ̃t−αgt). Then, applying ∇A to both

sides and using the fact that ∇A = (∇A∗)−1, we have ξt = ∇A(ηt) = ξ̃t − αgt.

Now, suppose we use the expected utility (Eq. (5.10)) as the loss function. We find that,

under the assumption7 in Proposition 1, the update rule in Eq. (5.18) becomes

ξt = (1− α)ξ̃t + αEπ̂θ̃t (ût)[wt(ût)ϕ(ût)], (5.20)

where we take advantage of the fact that Eπ̂θ̃t (ût)[wt(ût)] = 1 under the expected utility

loss function (Table 5.1). In other words, when α ∈ [0, 1], the update to the expectation

parameter ξt in Eq. (5.5) is simply a convex combination of the sufficient statistics and the

previous expectation parameter ξ̃t.

7If ξ̃t − αgt is not in M, the update in Eq. (5.18) needs to perform a projection, the form of which is
algorithm dependent.

52

We provide a concrete example of an MPC algorithm that follows from Eq. (5.20). Let

us consider a continuous control space and use the Gaussian distribution as the control

distribution, i.e., we set π̂θ(û) = N (û;µ,Σ) for some mean µ ∈ RHm and covariance

matrix Σ ≻ 0. We keep the covariance fixed and have the mean µ be parameterized by

the natural parameters θ. Under the exponential family parameterization, the sufficient

statistics are ϕ(û) = Σ−1/2û, implying the expectation parameters are ξ = Σ−1/2µ. The

nautral parameters are θ = η = Σ−1/2µ. Substituting these into Eq. (5.20) and canceling

out the common Σ−1/2 factor, the equivalent update rule based on the Gaussian’s mean is:

µt = (1− α)µ̃t + αEπ̂θ̃t (ût)[wt(ût)ût]. (5.21)

Several existing algorithms are special cases of Eq. (5.21).

• Cross-entropy method (CEM) (Botev et al., 2013; Goschin et al., 2013):

If we set ℓt to the threshold utility (Eq. (5.12)), then Eq. (5.21) becomes

µt = (1− α)µ̃t + α
Eπ̂θ̃t (ût)[1{Ĉt(ût) ≤ Ct,max} ût]
Eπ̂θ̃t (ût)[1{Ĉt(ût) ≤ Ct,max}]

, (5.22)

which reduces to the cross-entropy method for fixed covariance Gaussians when

α = 1.

• Model predictive path integral (MPPI) (Williams, Wagener, et al., 2017):

If we set ℓt to the exponential utility (Eq. (5.14)), then Eq. (5.21) becomes

µt = (1− α)µ̃t + α
Eπ̂θ̃t (ût)[e

−Ĉt(ût)/λ ût]

Eπ̂θ̃t (ût)[e
−Ĉt(ût)/λ]

, (5.23)

which reduces to the proximal MPPI update rule (Eq. (4.9)) when α = 1.

53

5.3.3 Shift Model

While a variety of shift models Φ (Eq. (5.2)) are possible, we only consider the case where

we have a temporally independent distribution. That is, we assume that π̂θt factorizes as

π̂θt(ût) =
H−1∏
h=0

π̂θt,h(ût,h), (5.24)

and θt = (θt,0, θt,1, . . . , θt,H−1) for some basic control distribution π̂θ parameterized by

some θ ∈ Θ, where Θ denotes the feasible set for the basic control distribution. For control

distributions of the form in Eq. (5.24), one valid shift operator Φ is:

Φ((θt,0, θt,1, . . . , θt,H−2, θt,H−1)) = (θt,1, θt,2, . . . , θt,H−1, θ̄),

where θ̄ is some default parameter.

5.3.4 Extensions

In the previous sections, we discussed multiple instantiations of DMD-MPC, showing the

flexibility of the proposed framework. But these are by no means exhaustive. The con-

trol distributions in DMD-MPC can be fairly general (in addition to the categorical and

Gaussian distributions that we discussed) and control constraints on the problem (e.g., con-

trol limits) can be directly incorporated through proper choices of control distributions,

such as the beta distribution, or through mapping the unconstrained control through some

squashing function (e.g., tanh or clamp). Though our framework cannot directly handle

state constraints as in constrained optimization approaches, a constraint can be relaxed to

an indicator function which activates if the constraint is violated. The indicator function

can then be added to the cost function c with some weight that encodes how strictly the

constraint should be enforced.

Moreover, different integration techniques, such as Gaussian quadrature (Bellman and

54

Casti, 1971), can be adopted to replace the likelihood-ratio derivative in Eq. (5.6) for com-

puting the required gradient direction.

5.4 Related Work

Recent work on MPC has studied sampling-based approaches, which are flexible in the

sense that they do not require differentiability of a cost function. One such algorithm that

can be used with general cost functions and dynamics is MPPI, which Williams, Wagener,

et al. (2017) propose as a generalization of the control affine case (Williams, Drews, et

al., 2016). The algorithm is derived by considering an optimal control distribution defined

by the control problem. This optimal distribution is intractable to sample from, so the

algorithm instead tries to bring a tractable distribution (in this case, Gaussian with fixed co-

variance) as close as possible in the sense of KL divergence. This ends up being the same

as finding the mean of the optimal control distribution. The mean is then approximated

as a weighted sum of sampled control trajectories, where the weight is determined by the

exponentiated costs. Although this algorithm works well in practice (including a robust

variant (Williams, Goldfain, et al., 2018) achieving state-of-the-art performance in aggres-

sive driving (Drews et al., 2019)), it is not clear that matching the mean of the distribution

should guarantee good performance, such as in the case of a multimodal optimal distri-

bution. By contrast, our update rule in Eq. (5.23) results from optimizing an exponential

utility.

A closely related approach is the cross-entropy method (CEM) (Botev et al., 2013),

which also assumes a Gaussian sampling distribution but minimizes the KL divergence

between the Gaussian distribution and a uniform distribution over low cost samples. CEM

has found applicability in reinforcement learning (Mannor et al., 2003; Menache et al.,

2005; Szita and Lörincz, 2006), motion planning (Helvik and Wittner, 2002; Kobilarov,

2012), and MPC (Chua et al., 2018; Williams, Drews, et al., 2018; Finn and Levine, 2017;

Yang et al., 2020).

55

These sampling-based control algorithms can be considered special cases of general

derivative-free optimization algorithms, such as covariance matrix adaptation evolutionary

strategies (CMA-ES) (Hansen et al., 2003) and natural evolutionary strategies (NES) (Wier-

stra et al., 2014). CMA-ES samples points from a multivariate Gaussian, evaluates their

fitness, and adapts the mean and covariance of the sampling distribution accordingly. On

the other hand, NES optimizes the parameters of the sampling distribution to maximize

some expected fitness through steepest ascent, where the direction is provided by the nat-

ural gradient. Akimoto et al. (2012) show that CMA-ES can also be interpreted as taking

a natural gradient step on the parameters of the sampling distribution. As we show in Sec-

tion 5.3.2, natural gradient descent is a special case of the DMD-MPC framework. Okada

and Taniguchi (2018) make a similar observation that connects MPPI with mirror descent,

but their derivation is limited to the KL divergence and Gaussian case.

5.5 Experiments

We use experiments to validate the flexibility of DMD-MPC. We show that this frame-

work can handle both continuous (Gaussian distribution) and discrete (categorial distribu-

tion) variations of control problems, and that MPC algorithms like MPPI and CEM can

be generalized using different step sizes and control distributions to improve performance.

Additional system and task details are included in Chapter A.

5.5.1 Cartpole

We first consider the classic cartpole problem where we seek to swing a pole upright and

keep it balanced only using actuation on the attached cart. We consider both the continuous

and discrete control variants. For the continuous case, we choose the Gaussian distribution

as the control distribution and keep the covariance fixed. For the discrete case, we choose

the categorical distribution and use update Eq. (5.17). In either case, we have access to a

biased stochastic model (uses a different pole length compared to the real cart).

56

10−6 10−4 10−2 100 102

Step size α

106

107

108

E
pi

so
de

co
st

Expected cost, K = 10

Expected cost, K = 100

Expected cost, K = 1000

10−2 10−1 100 101 102

Step size α

106

107

108

Threshold utility, K = 10

Threshold utility, K = 100

Threshold utility, K = 1000

Exponential utility, K = 10

Exponential utility, K = 100

Exponential utility, K = 1000

(a) Continuous controls

10−6 10−4 10−2 100 102

Step size α

106

107

108

E
pi

so
de

co
st

Expected cost, K = 10

Expected cost, K = 100

Expected cost, K = 1000

10−2 10−1 100 101 102

Step size α

106

107

108

Threshold utility, K = 10

Threshold utility, K = 100

Threshold utility, K = 1000

Exponential utility, K = 10

Exponential utility, K = 100

Exponential utility, K = 1000

(b) Discrete controls

Figure 5.4: Varying step size α and number of samples K (same legends for (a) and (b)).
Threshold utility Eq. (5.12) uses elite fraction = 10−3. Exponential utility Eq. (5.14) uses
λ = 1.

10−4 10−3 10−2 10−1

Elite fraction

106

107

108

E
pi

so
de

co
st

Threshold utility

α = 0.25

α = 0.5

α = 1.0

α = 2.0

α = 4.0

0 10−4 10−3 10−2 10−1 100 101 102 103

λ

106

107

108

Exponential utility

(a) Continuous controls

10−4 10−3 10−2 10−1

Elite fraction

106

107

108

E
pi

so
de

co
st

Threshold utility

α = 2.5

α = 5.0

α = 10.0

α = 20.0

α = 40.0

0 10−4 10−3 10−2 10−1 100 101 102 103

λ

106

107

108

Exponential utility

(b) Discrete controls

Figure 5.5: Varying loss parameter and step size (K = 1000).

We consider the interaction between the choice of loss ℓt, step size α, and number of

samplesK used to estimate Eq. (5.6),8 shown in Figs. 5.4 and 5.5. For this environment, we

can achieve low cost when optimizing the expected cost in Eq. (5.8) with a proper step size

(10−2 for both continuous and discrete problems) while being fairly robust to the number

of samples. When using either of the utilities, the number of samples is more crucial in

the continuous domain, with more samples allowing for larger step sizes. In the discrete

domain (Fig. 5.4b), performance is largely unaffected by the number of samples when the

step size is below 10, excluding the threshold utility with K = 1000 samples. In Fig. 5.5a,

for a large range of utility parameters, we see that using step sizes above 1 (the step size

set in MPPI and CEM) give significant performance gains. In Fig. 5.5b, there’s a more

complicated interaction between the utility parameter and step size, with huge changes in

cost when altering the utility parameter and keeping the step size fixed.

8For our experiments, we vary the number of samples K from π̂θ and fix the number of samples from p̂
to 10. Furthermore, we use common random numbers when sampling from p̂ to reduce estimation variance.

57

Figure 5.6: AutoRally car.

5.5.2 AutoRally

Platform Description

We used the autonomous AutoRally platform (Goldfain et al., 2019) to run a high-speed

driving task on a dirt track, with the goal of the task being to achieve as low a lap time

as possible. The robot (Fig. 5.6) is a 1:5 scale RC chassis capable of driving over 20 m/s

(45 mph) and has an Intel i7-7700 CPU and Nvidia GTX 1050 Ti GPU. Our code for the

control algorithm is based on modifications of code available on the AutoRally repository.9

For real-world experiments, we estimated the car’s pose using a particle filter from Drews et

al. (2019) which relies on a monocular camera, IMU, and GPS. In both simulated and real-

world experiments, the dynamics model is a neural network which has been fitted to data

collected from human demonstrations. We note that the dynamics model is deterministic,

so we don’t need to estimate any expectations with respect to the dynamics.

Simulated Experiments

We first used the Gazebo simulator (Fig. 5.7) from the AutoRally repo to perform a sweep

of algorithm parameters, particularly the step size α and number of samples K, to evaluate

how changing these parameters can affect the performance of DMD-MPC. For all of the

9https://github.com/AutoRally/autorally

58

https://github.com/AutoRally/autorally

Figure 5.7: Simulated AutoRally task.

0.6 0.8 1.0 1.2
Step size α

10

20

La
p

tim
e

(s
)

K = 64

K = 192

K = 448

K = 960

K = 1920

K = 3840

Figure 5.8: Simulated AutoRally performance with different step sizes and number of sam-
ples. Though many samples coupled with large steps yield the smallest lap times, the per-
formance gains are small past K = 1920 samples. With fewer samples, a lower step size
helps recover some lost performance.

experiments, the control distribution was a Gaussian with fixed covariance, and we used

update Eq. (5.23) (i.e., the loss is the exponential utility Eq. (5.14)) with λ = 6.67. The

resulting lap times are shown in Fig. 5.8.10 We see that although using more samples does

result in smaller lap times, there are diminishing returns past K = 1920 samples. Indeed,

with a proper step size, even as few as 192 samples can yield lap times within a couple

seconds of 3840 samples and a step size of 1. We also observe that the curves converge as

the step size decreases further, implying that only a certain number of samples are needed

for a given step size. This is a particularly important advantage of DMD-MPC over methods

like MPPI: by changing the step size, DMD-MPC can perform much more effectively with

fewer samples, making it a good choice for embedded systems which can’t produce many

samples due to computational constraints.

10The large error bar for K = 64 samples and step size α = 0.8 is due to one particular lap where the car
stalled at a turn for about 60 seconds.

59

Table 5.2: Statistics for real-world experiments at target of 9 m/s.

Samples K Step size α Lap time (s) Avg. speed (m/s) Max speed (m/s)
1920 1 31.76± 0.55 5.70± 0.16 9.21± 0.30

0.8 31.81± 0.21 5.75± 0.03 9.03± 0.19
0.6 32.83± 0.31 5.60± 0.05 8.62± 0.12

64 1 33.74± 0.78 5.45± 0.16 9.50± 0.22
0.8 33.84± 0.80 5.46± 0.11 9.12± 0.26
0.6 33.61± 0.74 5.50± 0.13 9.14± 0.42

We qualitatively evaluate two particular extremes: few vs. many samples (64 vs. 3840)

and small vs. large step size (0.5 vs. 1) by looking at the path and speed of the car during the

episode (Fig. 5.9). At small step sizes (Figs. 5.9a and 5.9c), the path and speed profiles are

rather similar, while with few samples and a large step size (Fig. 5.9b), the car drives much

more slowly and erratically, sometimes even stopping. In the ideal scenario with many

samples and a large step size, the car can achieve consistently high speed while driving

smoothly (Fig. 5.9d).

We also experimented with optimizing the expected cost (Eq. (5.8)) and found perfor-

mance is dramatically worse (Fig. 5.10), even when using K = 3840 samples per gradient.

At best, the car drove in the center of the track at speeds below 4 m/s (Fig. 5.10c), and at

worst, the car either slowly drove along the track walls (Fig. 5.10a) or the controller eventu-

ally produced NaN controls that prematurely ended the experiment (Fig. 5.10d). This poor

performance is likely due to most samples in the estimate of Eq. (5.9) having very high

cost (e.g., due to leaving the track) and contributing significantly to the gradient estimate.

On the other hand, when estimating Eq. (5.15), as in the experiments in Section 5.5.2,

these high cost trajectories are assigned very low weights so that only low cost trajectories

contribute to the gradient estimate.

Real-World Experiments

In the real-world setting (Fig. 5.11), the control distribution was a Gaussian with fixed

covariance, and we used update Eq. (5.23) with λ = 8. We ran two sets of experiments,

60

(a) K = 64,
α = 0.5

(b) K = 64,
α = 1

(c) K = 3840,
α = 0.5

(d) K = 3840,
α = 1

Figure 5.9: Simulated car speeds when optimizing the exponential utility (Eq. (5.14)).
The speeds and trajectories are very similar at step size 0.5, irrespective of the number of
samples. At step size 1, though, 64 samples result in capricious maneuvers and low speeds,
whereas 3840 samples result in smooth driving at high speeds.

(a) α = 0.025 (b) α = 0.05 (c) α = 0.075 (d) α = 0.1

Figure 5.10: Simulated car speeds when optimizing the expected cost (Eq. (5.8)). All tested
step sizes result in low speeds. At too low or too high of a step size, the car will drive along
the wall or crash into it.

61

Figure 5.11: Real-world AutoRally task.

Table 5.3: Statistics for real-world experiments at target of 11 m/s.

Samples K Step size α Lap time (s) Avg. speed (m/s) Max speed (m/s)
64 1 31.05± 0.67 5.80± 0.26 10.17± 0.30

0.6 30.30± 0.56 5.98± 0.15 10.30± 0.05

each with a different target speed: one at 9 m/s and the other at 11 m/s.

For the first set of experiments (target of 9 m/s), we used the following configura-

tions: each of 1920 and 64 samples, and each of step sizes 1 (corresponding to MPPI),

0.8, and 0.6.11 Overall (Table 5.2), there was a mild degradation in performance when

decreasing the step size at K = 1920 samples, due to the car taking a longer path on the

track (Fig. 5.12a vs. Fig. 5.12c). With K = 64 samples, the results seem unaffected by the

step size. This could be because, despite the noisiness of the DMD-MPC update, the set-

point controller in the car’s steering servo acts as a filter, smoothing out the control signal

and allowing the car to drive on a consistent path (Fig. 5.13). Videos of this experiment can

be found at https://youtu.be/vZST3v0_S9w.

For the second set of experiments (target of 11 m/s), we fixed the number of samples

K at 64 and used step sizes of 1 (corresponding to MPPI) and 0.6. The statistics slightly

improved with a decreased step size (Table 5.3), but qualitatively there was a larger differ-

ence between the step sizes. With a step size of 1, the car often wobbled while driving,

turns around at one point, and crashes in one of the trials (Fig. 5.14a). On the other hand,

with a step size of 0.6, the car drove much more smoothly and succeeded at the aggressive

11Due to weaker batteries used with 64 samples, results should not be compared across number of samples.

62

https://youtu.be/vZST3v0_S9w

(a) α = 1 (b) α = 0.8 (c) α = 0.6

Figure 5.12: Real-world car speeds with K = 1920 samples and target of 9 m/s.

(a) α = 1 (b) α = 0.8 (c) α = 0.6

Figure 5.13: Real-world car speeds with K = 64 samples and target of 9 m/s.

(a) α = 1 (b) α = 0.6

Figure 5.14: Real-world car speeds with K = 64 samples and target of 11 m/s.
In Fig. 5.14a, note the crash and U-turn at the top of the plot as well as the wider spread
of the paths throughout the whole track. By contrast, in Fig. 5.14b, the resulting paths are
more consistent, and there are no failure points.

63

driving task with no issues (Fig. 5.14b). Despite the smoothing effect of the low-level con-

trollers in the car, the more stringent costs associated with the larger target speed caused

the noisiness of the DMD-MPC update to manifest in the car’s performance when using a

step size of 1. A smaller step size mitigated this noisiness. Videos of this experiment are

available at https://youtu.be/MhuqiHo2t98.

5.6 Conclusion

We presented a connection between model predictive control and online learning. From this

connection, we proposed an algorithm based on dynamic mirror descent that can work for

a wide variety of settings and cost functions. We also discussed the choice of loss function

within this online learning framework and the sort of preference each loss function imposes.

From this general algorithm and assortment of loss functions, we show several well known

algorithms are special cases and presented a general update for members of the exponential

family.

We empirically validated our algorithm on continuous and discrete simulated problems

and on a real-world aggressive driving task. In the process, we also studied the parameter

choices within the framework, finding, for example, that in our framework a smaller num-

ber of rollout samples can be compensated for by varying other parameters like the step

size.

We hope that the online learning and stochastic optimization viewpoints of MPC pre-

sented in this chapter opens up new possibilities for using tools from these domains, such

as alternative efficient sampling techniques (Bellman and Casti, 1971) and accelerated op-

timization methods (Miyashita et al., 2018; Okada and Taniguchi, 2018), to derive new

MPC algorithms that perform well in practice.

64

https://youtu.be/MhuqiHo2t98

Part II

Reinforcement Learning

65

CHAPTER 6

PRELIMINARIES

This section builds upon the material presented in Section 2.1 and Section 2.1.1.

Reinforcement learning (Sutton and Barto, 2018) seeks to have an agent to learn good

behaviors via trial-and-error interactions with an environment. In particular, it seeks a pol-

icy π that maximizes the expected sum of discounted rewards in the environment (Eq. (2.2)).

There are several quantities related to π that are useful for policy optimization. The

value function V π of policy π:

V π(s) ≜ Eρπ(τ |s0=s)

[∞∑
t=0

γtr(st, at)

]
.

The state-action value function Qπ of policy π is:

Qπ(s, a) ≜ Eρπ(τ |s0=s,a0=a)

[∞∑
t=0

γtr(st, at)

]

One consequence of these definitions is that V π(s) = Eπ(a|s)[Qπ(s, a)]. We also define the

advantage function Aπ of policy π as:

Aπ(s, a) ≜ Qπ(s, a)− V π(s).

Let π⋆ be an optimal policy of M (i.e., a policy that solves Eq. (2.2)). We then define the

optimal value function V ⋆ and optimal state-action value function Q⋆ as V ⋆ = V π⋆ and

Q⋆ = Qπ⋆ , respectively.

We define the state visitation distribution dπ under π as:

dπ(s) ≜ (1− γ)
∞∑
t=0

γtρπ(st = s).

66

We similarly define the state-action visitation distribution as dπ(s, a) ≜ dπ(s)π(a|s).

6.1 Proximal Policy Optimization (PPO)

In the following chapters, we will use the proximal policy optimization (PPO) algorithm (Schul-

man, Wolski, et al., 2017) to optimize the policy π. PPO is an on-policy algorithm that

alternates between rolling out π and updating π using the collected data. We represent the

policy with a neural network πθ (with parameters θ) and the value function with a neural

network Vϕ (with parameters ϕ). At some iteration k, we have data collection policy πθk .

Given some state s and action a, the PPO objective function consists of three terms:

• Policy optimization term:

ℓπk(θ, s, a) = −min

{
πθ(a|s)
πθk(a|s)

Â(s, a), clip

{
πθ(a|s)
πθk(a|s)

, 1− ε, 1 + ε

}
Â(s, a)

}

Here, ε is a clipping hyperparameter, and Â(s, a) is an estimate of the advantage

function of πθk . The estimate is usually found by generalized advantage estima-

tion (Schulman, Moritz, et al., 2016), a temporal difference method that uses the

learned value function Vϕ and empirical returns from rollouts. This optimization

term updates πθ towards good actions (as measured by Â), while the clipping keeps

πθ from deviating too far from the collection policy πθk .

• Value function term:

ℓVk (ϕ, s) = (Vϕ(s)− V̂k(s))
2

This term updates the value estimator Vϕ to match the empirical value V̂k of πθk

calculated from the rollouts.

• Policy entropy term:

ℓHk (θ, s) = −H(πθ(a|s)) = Eπθ(a|s)[log πθ(a|s)]

67

This term increases the entropy of the policy πθ to prevent the policy from becoming

deterministic too quickly, which helps maintain exploration.

Putting these all together, the PPO objective function at iteration k is:

ℓk(θ, ϕ) = Edπθk (s,a)[ℓ
π
k(θ, s, a) + wV ℓ

V
k (ϕ, s) + wHℓ

H
k (θ, s)],

where wV and wH are weighting hyperparameters. We use the Adam optimizer (Kingma

and Ba, 2015) for this objective. Because we use this optimizer and have separate networks

for the policy and value function, we can arbitrarily set wV = 1 and not affect the learning

dynamics.

6.2 Chance-Constrained Markov Decision Processes

Many robotic tasks partition the state space S into a set Sunsafe of undesired states and its

complement Ssafe. We assume Sunsafe is absorbing. For example, for a robot we may define

Sunsafe as the states where the robot is fallen over. We assume for simplicity of presentation

that Sunsafe is a set of two states {s▷, s◦} which follows the dynamics visualized in Fig. 6.1.

That is, we assume that when going from Ssafe to Sunsafe we first visit the “violation” state

s▷ and then transition to an absorbing state s◦.

Ssafe s▷ s◦

Figure 6.1: Absorbing property of Sunsafe

Naturally, we would like our policy π to rarely visit the unsafe set. Defining c(s, a) =

1{s = s▷} as a cost function that indicates whether we visit the violation state and δ as the

tolerated violation probability, we want to solve the following chance-constrained policy

68

optimization problem (Altman, 1999):

max
π

Eρπ(τ)

[∞∑
t=0

γtr(st, at)

]
subject to Eρπ(τ)

[∞∑
t=0

γtc(st, at)

]
≤ δ. (6.1)

6.2.1 Safe Reinforcement Learning

Despite the ability of reinforcement learning to eventually produce good policies, we may

desire to avoid going to undesirable states as much as possible during training. In the con-

text of the chance-constrained problem in Eq. (6.1), we want to satisfy the safety constraint

even during training, despite the objective only specifying the constraint for the returned

policy π.

Safe reinforcement learning (García and Fernández, 2015; Amodei et al., 2016) stud-

ies the problem of designing learning agents with this constraint in mind. Many safe RL

approaches tackle the safety requirement in one of two ways:

• Constrained RL: These approaches directly solve the constrained optimization prob-

lem in Eq. (6.1), e.g., by introducing a Lagrange multiplier w for the constraint and

solving the resultant minimax problem:

max
π

min
w≥0

Eρπ(τ)

[∞∑
t=0

γt(r(st, at)− wc(st, at))

]
+ wδ. (6.2)

Though these approaches can ultimately learn a policy that satisfies the safety con-

straint, there are usually no guarantees on safety during training.

• Preemptive intervention: Roughly speaking, a safety layer is wrapped around the RL

policy π, whereupon it filters out any proposed actions that are deemed unsafe. Thus,

we (ideally) avoid the unsafe set during the exploration process. The safety layer can

be quite general, ranging from simple heuristics (e.g., if a bipedal robot is tilted

too far forward, a safety gantry lifts the robot off the ground) to control-theoretic

techniques like control barrier functions.

69

Model-free and model-based techniques may be used in either approach. We discuss ex-

amples of both approaches in Section 7.4.

70

CHAPTER 7

SAFE REINFORCEMENT LEARNING USING ADVANTAGE-BASED

INTERVENTION

Many sequential decision problems involve finding a policy that maximizes total reward

while obeying safety constraints. Although much recent research has focused on the de-

velopment of safe reinforcement learning (RL) algorithms that produce a safe policy after

training, ensuring safety during training as well remains an open problem. A fundamen-

tal challenge is performing exploration while still satisfying constraints in an unknown

Markov decision process (MDP). In this chapter, we address this problem for the chance-

constrained setting. We propose a new algorithm, SAILR, that uses an intervention mecha-

nism based on advantage functions to keep the agent safe throughout training and optimizes

the agent’s policy using off-the-shelf RL algorithms designed for unconstrained MDPs. Our

method comes with strong guarantees on safety during both training and deployment (i.e.,

after training and without the intervention mechanism) and policy performance compared

to the optimal safety-constrained policy. In our experiments, we show that SAILR violates

constraints far less frequently during training than standard safe RL and constrained MDP

approaches and converges to a well-performing policy that can be deployed safely without

intervention. Our code is available at https://github.com/nolanwagener/safe_rl.

7.1 Introduction

Reinforcement learning (RL) (Sutton and Barto, 2018) enables an agent to learn good be-

haviors with high returns through interactions with an environment of interest. However,

in many settings, we want the agent not only to find a high-return policy but also avoid

undesirable states as much as possible, even during training. For example, in a bipedal lo-

comotion task, we do not want the robot to fall over and risk damaging itself either during

71

https://github.com/nolanwagener/safe_rl

Figure 7.1: Advantage-based intervention of SAILR and construction of the surrogate
MDP M̃. In M, whenever the policy π proposes an action a which is disadvantageous
(w.r.t. a backup policy µ) in terms of safety, µ intervenes and guides the agent to safety
(green path). From the perspective of π, it transitions to an absorbing state s† and receives
a penalizing reward of −1.

training or deployment. Maintaining safety while exploring an unknown environment is

challenging, because venturing into new regions of the state space may carry a chance of a

costly failure.

Safe reinforcement learning (García and Fernández, 2015; Amodei et al., 2016) studies

the problem of designing learning agents for sequential decision-making with this chal-

lenge in mind. Most safe RL approaches tackle the safety requirement either by framing

the problem as a constrained Markov decision process (CMDP) (Altman, 1999) or by us-

ing control-theoretic tools to restrict the actions that the learner can take. However, due to

the natural conflict between learning, maximizing long-term reward, and satisfying safety

constraints, these approaches make different performance trade-offs.

CMDP-based approaches (Borkar, 2005; Achiam et al., 2017; Le et al., 2019) take in-

spiration from existing constrained optimization algorithms for non-sequential problems,

notably the Lagrangian method (Bertsekas, 2014). The most prominent examples (Chow,

Ghavamzadeh, et al., 2017; Tessler et al., 2018) rely on first-order primal-dual optimiza-

tion to solve a stochastic nonconvex saddle-point problem. Though they eventually pro-

duce a safe policy, such approaches provide no guarantees on policy safety during training.

72

Other safe RL approaches (Achiam et al., 2017; Le et al., 2019; Bharadhwaj et al., 2021)

conservatively enforce safety constraints on every policy iterate by solving a constrained

optimization problem, but they can be difficult to scale due to their high computational

complexity. All of the above methods suffer from numerical instability originating in solv-

ing the stochastic nonconvex saddle-point problems (Facchinei and Pang, 2007; Lin et al.,

2020); consequently, they are less robust than typical unconstrained RL algorithms.

Control-theoretic approaches to safe RL use interventions, projections, or planning (Hans

et al., 2008; Wabersich and Zeilinger, 2021; Dalal et al., 2018; Berkenkamp et al., 2017) to

enforce safe interactions between the agent and the environment, independent of the policy

the agent uses. The idea is to use domain-specific heuristics to decide whether an action

proposed by the agent’s policy can be safely executed. However, some of these algorithms

do not allow the agent to learn to be safe after training (Wabersich and Zeilinger, 2021;

Hans et al., 2008; Polo and Rebollo, 2011), so they may not be applicable in scenarios

where the control mechanism relies on resouces only available during training (such as

computationally demanding online planning). It is also often unclear how these policies

perform compared to the optimal policy in the CMDP-based approach.

In this chapter, we propose a new algorithm, SAILR (Safe Advantage-based Interven-

tion for Learning policies with Reinforcement), that uses a novel advantage-based interven-

tion rule to enable safe and stable RL for general MDPs. Our method comes with strong

guarantees on safety during both training and deployment (i.e., after training and without

the intervention mechanism) and has good on-policy performance compared to the opti-

mal safety-constrained policy. Specifically, SAILR trains the agent’s policy by calling an

off-the-shelf RL algorithm designed for standard unconstrained MDPs. In each iteration,

SAILR:

1. queries the base RL algorithm to get a data-collection policy,

2. runs the policy in the MDP while utilizing the advantage-based intervention rule to

ensure safe interactions (and executes a backup policy upon intervention to ensure

73

safety),

3. transforms the collected data into experiences in a new unconstrained MDP that pe-

nalizes any visits of intervened state-actions (visualized in Fig. 7.1), and

4. gives the transformed data to the base RL algorithm to perform policy optimization.

Under very mild assumptions on the MDP and the safety of the backup policy used

during the intervention,1 we prove that running SAILR with any RL algorithm for uncon-

strained MDPs can safely learn a policy that has good performance in the safety-constrained

MDP (with a bias propotional to how often the true optimal policy would be overridden by

our intervention mechanism). Compared with existing work, SAILR is easier to implement

and runs more reliably than the CMDP-based approaches. In addition, since we only rely

on estimated advantage functions, our approach is also more generic than the aforemen-

tioned control-theoretic approaches which make assumptions on smoothness or ergodicity

of the problem.

We also empirically validate our theory by comparing SAILR with several standard

safe RL algorithms in simulated robotics tasks. The encouraging experimental results

strongly support the theory: SAILR can learn safe policies with competitive performance

using a standard unconstrained RL algorithm, PPO (Schulman, Wolski, et al., 2017), while

incurring only a small fraction of unsafe training rollouts compared to the baselines.

7.2 Preliminaries

7.2.1 Notation

Here, we adopt the notation introduced in Chapter 6. We assume the reward function r(s, a)

lies in [0, 1] and that S and A can be either discrete or continuous. We use the following

overloaded notation: For a state distribution d ∈ ∆(S) and a function f : S → R, we define

1We only assume that the unsafe states are absorbing and that the backup policy is safe from the initial
state with high probability. We do not assume that the backup policy can achieve high rewards.

74

f(d) ≜ Ed(s)[f(s)]; similarly, for a policy π and a function g : S × A → R, we define

g(s, π) ≜ Eπ(a|s)[g(s, a)]. Finally, later in the chapter we will consider multiple variants of

an MDP (specifically, M, M̄, and M̃) and will use the decorative symbol on the MDP

notation to distinguish similar objects from different MDPs (e.g., V π and V̄ π will denote

the state value functions of π in M and M̄, respectively).

7.2.2 Safe Reinforcment Learning

We consider safe RL in a γ-discounted infinite horizon MDP M, where safety means that

the probability of the agent entering an unsafe subset Sunsafe ⊂ S is low. We assume that

we know the unsafe subset Sunsafe and the safe subset Ssafe ≜ S \ Sunsafe. However, we

make no assumption on the knowledge of the reward r and the dynamics p, except that the

reward r is zero on Sunsafe and that Sunsafe is absorbing: once the agent enters Sunsafe in a

rollout, it cannot travel back to Ssafe and stays in Sunsafe for the rest of the rollout.

Objective Our goal is to find a policy π that is safe and has a high return in M, and to do

so via a safe data collection process. Specifically, while keeping the agent safe during ex-

ploration, we want to solve the following chance-constrained policy optimization problem:

max
π

V π(d0) (7.1)

subject to (1− γ)
∞∑
h=0

γh Pρπ(τ)(τh ⊂ Ssafe) ≥ 1− δ,

where δ ∈ [0, 1] is the tolerated failure probability, τh = (s0, a0, . . . , sh−1, ah−1) denotes

an h-step trajectory segment, and Pρπ(τ)(τh ⊂ Ssafe) denotes the probability of τh being

safe (i.e., not entering Sunsafe from time step 0 to h− 1) under the trajectory distribution ρπ

of π on M.2

We desire the agent to provide anytime safety during both training and deployment.

During training, the agent can interact with the unknown MDP M to collect data under
2We abuse the notation τh ⊂ Ssafe to mean that st ∈ Ssafe for each st in τh = (s0, a0, . . . , sh−1, ah−1).

75

a training budget, such as the maximum number of environment interactions or allowed

unsafe trajectories the agent can generate. Once the budget is used up, training stops, and

an approximate solution of Eq. (7.1) needs to be returned.

The constraint in Eq. (7.1) is known as a chance constraint. The definition here accords

to an exponentially weighted average (based on the discount factor γ) of trajectory safety

probabilities of different horizons. This weighted average concept arises naturally in γ-

discounted MDPs, because the objective in Eq. (7.1) can also be written as a weighted

average of undiscounted expected returns, i.e., V π(d0) = (1 − γ)
∑∞

h=0 γ
hUπ

h (d0), where

Uπ
h (d0) ≜ Eρπ(τ)[

∑h
t=0 r(st, at)].

CMDP Formulation The chance-constrained policy optimization problem in Eq. (7.1)

can be formulated as a constrained Markov decision process (CMDP) problem (Altman,

1999; Chow, Ghavamzadeh, et al., 2017). For the mathematical convenience of defining

and analyzing the equivalence between Eq. (7.1) and a CMDP, instead of treating Sunsafe

as a single meta-absorbing state, without loss of generality we define Sunsafe ≜ {s▷, s◦}.

The semantics of this set is that when an agent leaves Ssafe and enters Sunsafe, it first goes

to s▷ and, regardless of which action it takes at s▷, it then goes to the absorbing state s◦ and

stays there forever. We can view s▷ as a meta-state that summarizes the unsafe region in a

given RL application (e.g., a biped robot falling on the ground) and s◦ as a fictitious state

that captures the absorbing property of Sunsafe.

For an MDP M with an unsafe set Sunsafe ≜ {s▷, s◦}, define the cost c(s, a) ≜ 1{s =

s▷}, where 1 denotes the indicator function. Then we can define a CMDP (S,A, p, r, c, γ)

using a reward-based MDP M ≜ (S,A, p, r, γ) and a cost-based MDP M̄ ≜ (S,A, p, c, γ).

Using these new definitions, we can write the chance-constrained policy optimization in

Eq. (7.1) as a CMDP problem:

max
π

V π(d0) subject to V̄ π(d0) ≤ δ. (7.2)

76

For completeness, we include a proof of this equivalence in Section B.1.2, which follows

from the fact that the unsafe probability can be represented as the expected cumulative

cost, i.e., Pρπ(τ)(s▷ ∈ τh) = Eρπ(τ)[
∑h−1

t=0 c(st, at)]. In other words, the chance-constrained

policy optimization problem is a CMDP problem that aims to find a policy that has a high

cumulative reward V π(d0) with cumulative cost V̄ π(d0) below the allowed failure proba-

bility δ.

Challenges This CMDP formulation has been commonly studied to design RL algo-

rithms to find good polices that can be deployed safely (Chow, Ghavamzadeh, et al., 2017;

Achiam et al., 2017; Tessler et al., 2018; Efroni et al., 2020). However, as mentioned in

the introduction, these algorithms do not necessarily ensure safety during training and can

be numerically unstable. At a high level, this instability stems from the lack of off-the-

shelf computationally reliable and efficient solvers for large-scale constrained stochastic

optimization.

While several control-theoretic techniques have been proposed to ensure safe data col-

lection (Dalal et al., 2018; Wabersich and Zeilinger, 2021; Perkins and Barto, 2002; Chow,

Nachum, Duenez-Guzman, et al., 2018; Chow, Nachum, Faust, et al., 2019; Berkenkamp

et al., 2017; Fisac et al., 2018) and in some cases prevent the need for solving a constrained

problem, it is unclear how the learned policy performs in terms of the objective V π(d0) in

Eq. (7.2) (i.e., without any interventions). Most of these algorithms also require stronger

assumptions on the environment than approaches based on CMDPs (e.g., smoothness or

ergodicity).

As we will show, our proposed approach retains the best of both approaches, ensur-

ing safe data collection via interventions while guaranteeing good performance and safety

when deployed without the intervention mechanism.

77

7.3 Method

Our safe RL approach, SAILR, finds an approximate solution to the CMDP problem in

Eq. (7.2) by using an advantage-based intervention rule for safe data collection and an off-

the-shelf RL algorithm for policy optimization. As we will see, SAILR can ensure safety

for both training and deployment, when

1. the intervention rule belongs to an “admissible class” (see Definition 1 in Section 7.3.1);

and

2. the base RL algorithm finds a nearly optimal policy for a new unconstrained problem

of a surrogate MDP M̃ constructed by the intervention rule together with M.

Moreover, because SAILR can reuse existing RL algorithms for unconstrained MDPs to

optimize policies, it is easier to implement and is more stable than typical CMDP ap-

proaches based on constrained optimization.

Specifically, SAILR optimizes policies iteratively as outlined in Algorithm 6. As input,

it takes an RL algorithm F for unconstrained MDPs and an intervention rule G : π 7→ G(π),

where π′ = G(π) is a shielded policy such that π′ runs a backup policy µ : S → ∆(A)

instead of π when π proposes “unsafe actions.” In every iteration, it takes the policy π

of interest and uses the intervention rule G to modify π into π′ (3) such that running π′

in the original MDP M can be safe with high probability while effectively simulating

execution of π in the surrogate M̃. Next, it collects the data D by running π′ in M and

then transforms it into new data D̃ of π in M̃ (4). It then feeds D̃ to the base RL algorithm

F for policy optimization (5), and optionally uses D to refine the intervention rule G (6).

The process above is repeated until the training budget is used up. When this happens,

SAILR terminates and returns the best policy π̂⋆ the base algorithm F can produce for M̃

so far (8).

We provide the following informal guarantee for SAILR, which is a corollary of our

main result in Theorem 1 presented in Section 7.3.3.

78

Algorithm 6: SAILR
Require: MDP M, RL algorithm F , Intervention rule G
Ensure: Optimized safe policy π̂⋆

1: Initialize π arbitrarily
2: while training budget available do
3: Set π′ = G(π)
4: Run π′ in M and collect datasets D and D̃
5: Update π using algorithm F and dataset D̃
6: Update intervention rule G using dataset D (Optional)
7: end while
8: Set π̂⋆ = π

Proposition 1 (Informal Guarantee). For SAILR, if the intervention rule G is admissible

(Definition 1 in Section 7.3.1) and the RL algorithm F learns an ε-suboptimal policy π̂

for M̃, then, for any comparator policy π⋆, π̂ has the following performance and safety

guarantees in M:

V π⋆

(d0)− V π̂(d0) ≤
2

1− γ
PG(π

⋆) + ε

V̄ π̂(d0) ≤ V̄ µ(d0) + ε,

where µ is the backup policy in G and PG(π⋆) is the probability that π⋆ visits the interven-

tion set of G in M.

In other words, if the base algorithm F used by SAILR can find an ε-suboptimal policy

for the surrogate, unconstrained MDP M̃, then the policy returned by SAILR is roughly ε-

suboptimal in the original MDP M, up to an additional error proportional to the probabilty

that the comparator policy π⋆ would be overridden by the intervention rule G at some

point while running in M. Furthermore, the returned policy π̂ is as safe as the backup

policy µ of the intervention rule G, up to an additional unsafe probability ε arising from the

suboptimality in solving M̃ with F .

We point out the results above hold without any assumption on the MDP (other than

that the unsafe subset Sunsafe is absorbing and the reward is zero on Sunsafe). To learn a safe

79

policy, SAILR only needs a good unconstrained RL algorithm F , a backup policy µ that

is safe starting at the initial state (not globally), and an advantage function estimate of µ,

as we explain later in this section.

The price we pay for keeping the agent safe using an intervention rule G is a perfor-

mance bias proportional to PG(π⋆)/(1 − γ). This happens because employing an inter-

vention rule during data collection limits where the agent can explore in M. Thus, if the

comparator policy π⋆ goes to high-reward states which would be cut off by the intervention

rule, SAILR (and any other intervention-based algorithm) will suffer in proportion to the

intervention probability. Despite the dependency on PG(π⋆), we argue that SAILR pro-

vides a resonable trade-off for safe RL thanks to its training safety and numerical stability.

Moreover, we will discuss how to use data to improve the intervention rule G to reduce this

performance bias.

In the following, we first discuss the design of our advantage-based intervention rules

(Section 7.3.1) and provide details of the new MDP M̃ (Section 7.3.2). Then, we state and

prove the main result Theorem 1 (Section 7.3.3). The omitted proofs for the results in this

section can be found in Section B.1.

7.3.1 Advantage-Based Intervention

We propose a family of intervention rules based on advantage functions. Each intervention

rule G here is specified by a 3-tuple (Q̄, µ, η), where Q̄ : Ssafe×A → [0, 1] is a state-action

value estimator, µ ∈ Π is a backup policy, and η ∈ [0, 1] is a threshold. Given an arbitrary

policy π, G = (Q̄, µ, η) constructs a new shielded policy π′ based on an intervention set I

defined by the advantage-like function Ā(s, a) ≜ Q̄(s, a)− Q̄(s, µ):

I ≜ {(s, a) ∈ Ssafe ×A : Ā(s, a) > η}. (7.3)

80

When sampling a from π′(·|s) at some s ∈ Ssafe, we first sample a− from π(·|s). If

(s, a−) /∈ I, we execute a = a−. Otherwise, we sample a according to µ(·|s). Mathemati-

cally, π′ is described by the conditional distribution

π′(a|s) ≜ π(a|s)1{(s, a) /∈ I}+ µ(a|s)w(s), (7.4)

where w(s) ≜ 1 −∑ã:(s,ã)∈I π(ã|s). Note that π′ may still take actions in I when µ has

non-zero probability assigned to those actions.

By running the shielded policy contructed by the advantage function Ā, SAILR controls

the safety relative to the backup policy µ with respect to d0. As we will show later, if

the relative safety for each time step (i.e., advantage) is close to zero, then the relative

safety overall is also close to zero (i.e. V̄ π′
(d0) ≤ δ). Note that the sheilded policy π′,

while satisfying V̄ π′
(d0) ≤ δ, can generally visit (with low probability) the states where

V̄ µ(s) > 0 (e.g., states where V̄ µ(s) = 1). At these places where µ is useless for safety,

we need an intervention rule that naturally deactivates and lets the learner explore. Our

advantage-based rule does exactly that. On the contrary, designing an intervention rule

directly based on Q-based functions (Bharadhwaj et al., 2021; Thananjeyan et al., 2021;

Eysenbach et al., 2018; Srinivasan et al., 2020) can be overly conservative in this scenario.

Motivating Example

Let us use an example to explain why the advantage-based rule works. Suppose we have a

baseline policy µ that is safe starting at the intial state of the MDP M (i.e., V̄ µ(d0) is small).

We can use µ as the backup policy and construct an intervention rule G = (Q̄µ, µ, 0), where

we recall Q̄µ denotes the state-action value of µ for the cost-based MDP M̄. Because the

intervention set in Eq. (7.3) only allows actions that are no more unsafe than the backup

policy µ during execution, intuitively we see that the intervened policy π′ will be at least

as safe as the baseline policy µ. Indeed, we can quickly verify this by the performance

81

difference lemma (Lemma 3): V̄ π′
(d0) = V̄ µ(d0) +

1
1−γ Edπ′ (s,a)[Ā

µ(s, a)] ≤ V̄ µ(d0). Im-

portantly, in this example, we see that the safety of π′ is ensured without requiring V̄ µ(s)

to be small for any s ∈ S, but only starting from states sampled from d0.

General Rules

We now generalize the above motivating example to a class of admissible intervention

rules.

Definition 1 (σ-Admissible Intervention Rule). We say that an intervention rule G =

(Q̄, µ, η) is σ-admissible if, for some σ ≥ 0, the following holds for all s ∈ Ssafe and

a ∈ A:

Q̄(s, a) ∈ [0, γ] (7.5)

Q̄(s, a) + σ ≥ c(s, a) + γ Ep(s′|s,a)[Q̄(s′, µ)], (7.6)

where we recall that c(s, a) = 1{s = s▷}. If the above holds with σ = 0, we say that G is

admissible.

One can verify that in the previous example G = (Q̄µ, µ, 0) is admissible. But more

generally, an admissible intervention rule with a backup policy µ can use Q̄ ̸= Q̄µ. In a

sense, admissibility (with σ = 0) only needs Q̄ to be a conservative version of Q̄µ, because

Q̄µ(s, a) = c(s, a) + γ Ep(s′|s,a)[Q̄µ(s, µ)] and Eq. (7.6) uses an upper bound; the σ term

is a slack variable to allow for non-conservative Q̄. More precisely, we have the following

relationship.

Proposition 2. If G = (Q̄, µ, η) is σ-admissible, then Q̄µ(s, a) ≤ Q̄(s, a) + σ
1−γ for all

s ∈ Ssafe and a ∈ A.

The condition in Eq. (7.6) is also closely related to the concept and theory of improvable

heuristics considered by Cheng, Kolobov, and Swaminathan (2021) (i.e., we can view the

82

Q̄(s, µ) as a heurisitic for safety), where the authors show such Q̄ can be constructed by

pessimistic offline RL methods.

Examples We discuss several ways to construct admissible intervention rules. From Def-

inition 1, it is clear that if G = (Q̄, µ, η) is σ-admissible, then G is also σ′-admissible for

any σ′ ≥ σ (in particular, (Q̄, µ, η) is γ-admissible if Q̄(s, a) ∈ [0, γ]). So we only discuss

the minimal σ.

Proposition 3 (Intervention Rules). The following are true.

1. Baseline policy: Given a baseline policy µ of M, G = (Q̄µ, µ, η) or G = (Q̄µ, µ+, η)

is admissible, where µ+ is the greedy policy that treats Q̄µ as a cost.

2. Composite intervention: Given K intervention rules {Gk}Kk=1, where each Gk =

(Q̄k, µk, η) is σk-admissible. Define Q̄min(s, a) = mink Q̄k(s, a) and let µmin be

the greedy policy w.r.t. Q̄min, and σmax = maxk σk. Then, G = (Q̄min, µmin, η) is

σmax-admissible.

3. Value iteration: Define T̄ as T̄ Q(s, a) ≜ c(s, a) + γ Ep(s′|s,a)[mina′ Q(s
′, a′)]. If

G = (Q̄, µ, η) is σ-admissible, then Gk = (T̄ kQ̄, µk, η) is γkσ-admissible, where µk

is the greedy policy that treats T̄ kQ̄ as a cost.

4. Optimal intervention: Let π̄⋆ be an optimal policy for M̄, and let Q̄⋆ be the corre-

sponding state-action value function. Then G⋆ = (Q̄⋆, π̄⋆, η) is admissible.

5. Approximation: For σ-admissible G = (Q̄, µ, η), consider Q̂ such that Q̂(s, a) ∈

[0, γ] for all s ∈ Ssafe and a ∈ A. If ∥Q̂ − Q̄∥∞ ≤ δ, then Ĝ = (Q̂, µ, η) is

(σ + (1 + γ)δ)-admissible.

Proposition 3 provides recipes for constructing σ-admissible intervention rules for safe

RL, such as leveraging existing baseline policies in a system (Examples 1 and 2) and per-

forming short-horizon planning (Example 3; namely model-predictive control (Bertsekas,

83

2017)). Moreover, Proposition 3 hints that we can treat designing intervention rules as

finding the optimal state-action value function Q̄⋆ in the cost-based MDP M̄ (Example 4).

Later, in Section 7.3.3, we prove that this intuition is indeed correct: among all intervention

rules that provide optimal safety, the rule G⋆ = (Q̄⋆, π̄⋆, 0) provides the largest free space

for data collection (i.e., small PG(π⋆) in Proposition 1) among the safest intervention rules.

Finally, Proposition 3 shows that an approximation of any σ-admissible intervention rule,

such as one learned from data or inferred from an inaccurate model (Cheng, Kolobov, and

Swaminathan, 2021), is also a reasonable intervention rule (Example 5). As learning con-

tinues in SAILR, we can use the newly collected data from M to refine our estimate of the

ideal Q̄, such as by performing additional policy evaluation for µ or policy optimization to

find Q̄⋆ of the cost-based MDP M̄.

General Backup Policies To conclude this section, we briefly discuss how to extend the

above results to work with general backup policies that may take actions outside A (i.e.,

the actions the learner policy aims to use), similar to Turchetta et al. (2020). For example,

such a backup policy can be implemented through an external “kill switch” in a robotics

system. For SAILR’s theoretical guarantees to hold in this case, we require one extra

assumption: for all (s, a) ∈ I that can be reached from d0 with some policy, there must

be some a′ ∈ A such that Ā(s, a′) = Q̄(s, a′) − Q̄(s, µ) ≤ η. In other words, for every

state-action we can reach from d0 that will be overridden, there must an alternative action

in the agent’s action space A that keeps the agent’s policy from being intervened. This

condition is a generalization of Definition 2 introduced later for our analysis (a condition

we call partial), which is essential to the unconstrained policy optimization reduction in

SAILR (Section 7.3.3). Note that while this condition holds trivially when the backup

policy µ takes only actions in A, generally the validity of this condition depends on the

details of µ and transition dynamics p.

84

7.3.2 Absorbing MDP

SAILR performs policy optimization by running a base RL algorithm F to solve a new

unconstrained MDP M̃. In this section, we define M̃ and discuss how to simulate experi-

ences of π in M̃ by running the shielded policy π′ = G(π) in the original MDP M.

Given the MDP M = (S,A, p, r, γ) and the intervention set I in Eq. (7.3), we define

M̃ = (S̃,A, p̃, r̃, γ) as follows: Let s† denote an absorbing state and c† ≥ 0 be some

problem-independent constant. The new MDP M̃ has the state space S̃ = S ∪ {s†} and

modified dynamics and reward,

r̃(s, a) =

−c†, (s, a) ∈ I

0, s = s†

r(s, a), otherwise

(7.7)

p̃(s′|s, a) =

1{s′ = s†}, (s, a) ∈ I or s = s†

p(s′|s, a), otherwise.
(7.8)

Since s† is absorbing, given a policy π defined on M, without loss of generality we extend

its definition on M̃ by setting π(a|s†) to be the uniform distribution over A. A simple

example of this construction is shown in Fig. 7.2.

Compared with the original M, the new MDP M̃ has more absorbing state-action pairs

and assigns lower rewards to them. When the agent takes some (s, a) ∈ I in M̃, it goes

to an absorbing state s† and receives a non-positive reward. Thus, the new MDP M̃ gives

larger penalties for taking intervened state-actions than for going into Sunsafe, where we

only receive zero reward. This design ensures that any nearly-optimal policy of M̃ will

(when run in M) have high reward and low probability of visiting intervened state-actions.

As we will see, as long as G provides safe shielded polices, solving M̃ will lead to a safe

policy with potentially good performance in the original MDP M even after we lift the

85

1

2

3

4 s▷ s◦

M

0.6

0.8

0.70.7

1

0

0.8

0.7

0.7

0.7

1

2

3

4 s▷ s◦

s† M̃

Figure 7.2: A simple example of the construction of M̃ from M using advantage-based
intervention given by some G = (Q̄, µ, η). In M, the transitions are deterministic, and the
blue arrows correspond to actions given by µ. The edge weights correspond to Q̄, and G
can be verified to be σ-admissible when σ = 0.25 and γ = 0.9. The surrogate MDP M̃ is
formed upon intervention with η = 0.05. The transitions 1 → 2 and 1 → 3 are replaced
with transitions to the absorbing state s†.

intervention.

To simulate experiences of a policy π in M̃, we simply run π′ = G(π) in the original

MDP M and collect samples until the intervention triggers (if at all). Specifically, suppose

running π′ in M generates a trajectory τ = (s0, a0, . . . , sT , a
′
T , . . .), where T is the time

step of intervention and a′T is the first action given by the backup policy µ. Let aT be the

corresponding action from π that was overridden. We construct the trajectory τ̃ that would

be generated by running π in M̃ by setting τ̃ = (s0, a0, . . . , sT , aT , s̃T+1, ãT+1, . . .), where

s̃t′ = s† and ãt′ is arbitrary for any t′ ≥ t+1. This is valid since the two MDPs M and M̃

share the same dynamics until the intervention happens at time step T .

7.3.3 Theoretical Analysis

We state the main theoretical result of SAILR, which includes the informal Proposition 1

as a special case.

Theorem 1 (Performance and Safety Guarantee at Deployment). Let c† = 1 and G be σ-

admissible. If π̂ is an ε-suboptimal policy for M̃, then, for any comparator policy π⋆, the

86

following performance and safety guarantees hold for π̂ in M:

V π⋆

(d0)− V π̂(d0) ≤
2

1− γ
PG(π

⋆) + ε

V̄ π̂(d0) ≤ Q̄(d0, µ) +
min{σ + η, 2γ}

1− γ
+ ε,

where PG(π⋆) ≜ (1− γ)
∑∞

h=0 γ
h Pρπ⋆ (τ)(τ

h ∩I ̸= ∅) is the probability that π⋆ visits I in

M.

Theorem 1 shows that, when the base RL algorithm F finds an ε-suboptimal policy π̂ in

M̃, this policy π̂ is also close to ε-suboptimal in the CMDP in Eq. (7.2), as long as running

the comparator policy π⋆ in M will result in low probability of visiting state-actions that

would be intervened by G (i.e., PG(π⋆) is small). In addition, the policy π̂ is almost as safe

as the backup policy µ, since Q̄(d0, µ) can be viewed as an upper bound of Q̄µ(d0, µ). The

safety deterioration can be made small when the suboptimality ε, intervention threshold

η, and imperfect admissibility σ of G are small. The proof of Theorem 1 follows directly

from Theorem 2 and Proposition 7 below, which are main properties of the advantage-based

intervention rules and the absorbing MDPs in SAILR. We now discuss these properties in

more detail.

Intervention Rules

First, we show that the shielded policy π′ produced by a σ-admissible intervention rule

G = (Q̄, µ, η) has a small unsafe cost if backup policy µ has a small cost.

Theorem 2 (Safety of Shielded Policy). Let G = (Q̄, µ, η) be σ-admissible as per Defini-

tion 1. For any policy π, let π′ = G(π). Then,

V̄ π′
(d0) ≤ Q̄(d0, µ) +

min{σ + η, 2γ}
1− γ

. (7.9)

Next we provide a formal statement that G⋆ = (Q̄⋆, π̄⋆, 0) is the optimal intervention

87

rule that gives the largest free space for policy optimization, among the safest intervention

rules. The size of the free space provided G⋆ is captured as SuppS×A(d̃
⋆,π), which can be

interpreted as the state-actions that G⋆(π) can explore before any intervention is triggered.

Proposition 4. Let π̄⋆ be an optimal policy for M̄, Q̄⋆ be its state-action value function,

and V̄ ⋆ be its state value function. LetG0 = {(Q̄, µ, 0) : (Q̄, µ, 0) is admissible, Q̄(d0, µ) =

V̄ ⋆(d0)}. Let G⋆ = (Q̄⋆, π̄⋆, 0) ∈ G0. Consider arbitrary G ∈ G0 and policy π. Let M̃ and

M̃⋆ be the absorbing MDPs induced by G and G⋆, respectively, and let d̃π and d̃⋆,π be their

respective state-action distributions. Then,

SuppS×A(d̃
π) ⊆ SuppS×A(d̃

⋆,π),

where SuppS×A(d) denotes the support of a distribution d when restricted on S ×A.

Finally, we highlight a property of the intervention set I of our advantage-based rules,

which is crucial for the unconstrained MDP reduction described in the next section.

Definition 2. A set X ⊂ Ssafe × A is called partial if for every (s, a) ∈ X , there is some

a′ ∈ A such that (s, a′) /∈ X .

Proposition 5. If η ≥ 0, then I in Eq. (7.3) is partial.

Proof. For (s, a) ∈ I, define a′ = argmina′′∈A Q̄(s, a′′). Because Ā(s, a′) = Q̄(s, a′) −

Q̄(s, µ) ≤ 0 ≤ η, we conclude that (s, a′) /∈ I.

Abosrbing MDP

As discussed in Section 7.3.2, the new MDP M̃ provides a pessimistic value estimate of M

by penalizing trajectories that trigger the intervention rule G. Precisely, we can show that

the amount of pessimism introduced on a policy π is proportional to PG(π) (the probability

of triggering the intervention rule G when running π in M).

88

Lemma 1. For every policy π, it holds that

c†PG(π) ≤ V π(d0)− Ṽ π(d0) ≤
(
c† +

1

1− γ

)
PG(π).

As a result, one would intuitively imagine that an optimal policy of M̃ would never

visit the intervention set I at all. Below we show that this intuition is correct. Impor-

tantly, we highlight that this property holds only because the intervention set I used here

is partial (Proposition 5). If we were to construct an absorbing MDP M̃′ described in

Section 7.3.2 using an arbitrary non-partial subset I ′ ⊆ Ssafe ×A, then the optimal policy

of M̃′ can still enter I ′ for any c† ≥ 0, because an optimal policy of M̃′ can use earlier

rewards to mitigate penalties incurred in I ′ (Section B.2.1).

Proposition 6. If c† is positive and G induces a partial I, then every optimal policy π̃⋆ of

M̃ satisfies PG(π̃⋆) = 0.

The partial property of I enables our unconstrained MDP reduction, which relates the

performance and safety of a policy π in the original MDP M to the suboptimality in the

new MDP M̃ and the safety of π′ = G(π).

Proposition 7 (Suboptimality in M̃ to Suboptimality and Safety in M). Let c† be positive.

For some policy π, let π′ be the shielded policy defined in Eq. (7.4). Suppose π is ε-

suboptimal for M̃. Then, for any comparator policy π⋆, the following performance and

safety guarantees hold for π in M:

V π⋆

(d0)− V π(d0) ≤
(
c† +

1

1− γ

)
PG(π

⋆) + ε

V̄ π(d0) ≤ V̄ π′
(d0) +

ε

c†
.

89

7.4 Related Work

CMDPs (Altman, 1999) have been a popular framework for safe RL as it side-steps the

reward design problem for ensuring safety in a standard MDP (Geibel and Wysotzki, 2005;

Shalev-Shwartz et al., 2016). Most existing CMDP-based safe RL algorithms closely fol-

low algorithms in the constrained optimization literature (Bertsekas, 2014). They can be

classified into either online or offline schemes. Online schemes learn by coupling the it-

eration of a numerical optimization algorithm (notably primal-dual gradient updates) with

data collection (Borkar, 2005; Chow, Ghavamzadeh, et al., 2017; Tessler et al., 2018;

Bohez, Abdolmaleki, et al., 2019), and these algorithms have also been studied in the ex-

ploration context (Ding et al., 2021; Qiu et al., 2020; Efroni et al., 2020). However, they

have no guarantees on policy safety during training. Offline schemes (Achiam et al., 2017;

Bharadhwaj et al., 2021; Le et al., 2019; Efroni et al., 2020), on the other hand, separate

optimization and data collection. They conservatively enforce safety constraints on every

policy iterate but are more difficult to scale up. Many of these constrained algorithms for

CMDPs, however, have worse numerical stability compared with typical RL algorithms for

MDPs, because of the nonconvex saddle-point of the CMDP (J. D. Lee et al., 2019; Chow,

Nachum, Duenez-Guzman, et al., 2018).

Another line of safe RL research uses control-theoretic techniques to enforce safe ex-

ploration, though only few provide guarantees with respect to the CMDP in Eq. (7.2). These

methods include restricting the agent to take actions that lead to next-state safety (Dalal et

al., 2018; Wabersich and Zeilinger, 2021) or states where a safe backup exists (Hans et al.,

2008; Polo and Rebollo, 2011; S. Li and Bastani, 2020). Other works consider more struc-

tured shielding approaches, including those with temporal logic safety rules and backup

policies (Alshiekh et al., 2018) and neurosymbolic policies (Anderson et al., 2020) whose

safety can be checked easily. Many of these approaches require strong assumptions on

the MDP (e.g., taking an action to ensure the next state’s safety being sufficient to imply

90

all future states will continue to have such safe actions available). Algorithms based on

Lyapunov functions and reachability (Perkins and Barto, 2002; Chow, Nachum, Duenez-

Guzman, et al., 2018; Chow, Nachum, Faust, et al., 2019; Berkenkamp et al., 2017; Fisac

et al., 2018) address the long-term feasibility issue, but they are more complicated than

common RL algorithms. We note that our admissible intervention rules in Eq. (7.6) can be

viewed as a state-action Lyapunov function.

To the best of our knowledge, SAILR is the first unconstrained method that provides

formal guarantees with respect to the CMDP objective. The closest work to ours is that of

Turchetta et al. (2020), who also use the idea of intervention for training safety and trains

the agent in a new MDP that discourages visiting intervened state-actions. However, their

algorithm, CISR, is still based on calling CMDP subroutines (Le et al., 2019). They neither

specify how the intervention rules can be constructed nor provide performance guarantees.

By comparsion, we provide a general recipe of intervention rules and obtain the properties

desired by Turchetta et al. (2020) by simply unconstrained RL.

7.5 Experiments

We conducted experiments to corroborate our theoretical analysis of SAILR. We aimed

to verify whether a properly designed intervention mechanism can drastically reduce the

amount of unsafe trajectories generated in training while still resulting in good safety and

performance in deployment.

Our experiments consider two different tasks:

1. A simple point robot inspired from Achiam et al. (2017) that gets reward for follow-

ing a circular path at high speed, but is constrained to stay in a region smaller than

the target circle.

2. A half-cheetah that gets reward equal to its forward velocity, with one of its links

constrained to remain in a given height range, outside of which the robot is deemed

91

Episode return
without interventions

Episode length
without interventions

Safety violations
during training

(a) Results for point robot

(b) Results for half-cheetah

Figure 7.3: Results of SAILR and baseline CMDP-based methods. Overall, SAILR dra-
matically reduces the amount of safety constraint violations while still having large returns
at deployment. Plots in a row share the same legend. All error bars are ±1 standard devi-
ation over 10 (point robot) or 8 (half-cheetah) random seeds. Any curve not plotted in the
third column corresponds to zero safety violations.

to be unsafe.

In all experiments, when computing Q̄, we opted to use a shaped cost function in place

of the original sparse indicator cost function to make our intervention mechanism more

conservative (and hence the training process safer). In particular, this shaped cost function

is a function of the distance to the unsafe set and is an upper bound of the original sparse

cost. Section B.4 in the Appendix includes some additional experiments where the original

sparse cost is used.

We implemented SAILR by using PPO (Section 6.1) as the RL subroutine. We also

compare our approach to two CMDP-based approaches: constrained policy optimization (CPO) (Achiam

et al., 2017) and a primal-dual optimization (PDO) algorithm (Chow, Ghavamzadeh, et al.,

2017). For the PDO algorithm, we used PPO as the policy optimization subroutine and

dual gradient ascent as the Lagrange multiplier update. We also consider a variant of PDO,

92

called “conservative safety critic” (CSC), where a learned conservative critic is used to

filter unsafe actions (Bharadhwaj et al., 2021).

7.5.1 Point Robot

Here SAILR used the intervention rule G = (µ, Q̄, η) where the baseline policy µ aims to

stop the robot by deceleration. The function Q̄ was estimated by either querying a fitted

Q-network or by rolling out µ on a dynamical model (denoted “MB” in Fig. 7.3a) of the

point robot and querying a shaped cost function. We consider both biased and unbiased

models (details in Section B.3.1). Fig. 7.3a shows the main experimental results, with all

three instances of SAILR outperforming the baselines on all three metrics. For SAILR,

the shielding prevented many safety violations, and the unconstrained approach allowed

for reliable convergence as opposed to the baselines which rely on elaborate constrained

approaches.

7.5.2 Half-Cheetah

We considered two intervention rules in SAILR: a reset backup policy µ with a simple

heuristic Q̄ based on the predicted height of the link after taking a proposed action, and

a reset backup policy µ based on a sampling-based model predictive control (MPC) algo-

rithm (Williams, Wagener, et al., 2017; Bhardwaj, Choudhury, et al., 2021) with a model-

based value estimate (i.e., Q̄ ≈ Q̄µ). The simple heuristic uses a slightly smaller height

range for intervention to attempt to construct a partial intervention set (Section 7.3.3). The

MPC algorithm optimized a control sequence over the same cost function. The function

Q̄ was computed by rolling out this control sequence on the dynamical model and query-

ing the cost function. We also considered model bias in the MPC experiments (details

in Section B.3.2).

As with the point environment, SAILR incurred orders of magnitude fewer safety vi-

olations than the baselines (right plot of Fig. 7.3b), with all three instances having compa-

93

rable deployment performance to that of CPO. Though the heuristic intervention violated

no constraints in training, it was consistently unsafe in deployment (middle plot), likely

because the resulting intervention set is not partial. On the other hand, MPC-based ap-

proaches were consistently safe in deployment, owing to its multi-step lookahead yielding

an intervention rule that is likely to be σ-admissible (and therefore give an intervention set

that is partial).

7.6 Conclusion

We presented an intervention-based method for safe reinforcement learning. By utilizing

advantage functions for intervention and penalizing an agent for taking intervened actions,

we can use unconstrained RL algorithms in the safe learning domain. Our analysis shows

that using advantage functions for the intervention decision gives strong guarantees for

safety during training and deployment, with the performance only limited by how often the

true optimal policy would be intervened. We also discussed ways of synthesizing good in-

tervention rules, such as using value iteration techniques. Finally, our experiments showed

that the shielded policy violates few, if any, constraints during training while the corre-

sponding deployed policy enjoys convergence to a large return.

94

CHAPTER 8

MoCapAct: A MULTI-TASK DATASET FOR SIMULATED HUMANOID

CONTROL

Simulated humanoids are an appealing research domain due to their physical capabilities

offering a wide range of flexibility in tasks and behaviors they can achieve. Nonetheless,

they are also challenging to control, as a policy must drive an unstable, discontinuous, and

high-dimensional physical system. One widely studied approach is to utilize motion cap-

ture (MoCap) data to teach the humanoid agent low-level skills (e.g., standing, walking,

and running) which can then be re-used to synthesize high-level behaviors. However, even

with MoCap data, controlling simulated humanoids remains very hard, as MoCap data

offers only kinematic information. Finding physical control inputs to realize the demon-

strated motions requires computationally intensive methods like reinforcement learning.

Thus, despite the publicly available MoCap data, its utility has been limited to institutions

with large-scale compute. In this chapter, we dramatically lower the barrier for productive

research on this topic by training and releasing high-quality agents that can track over three

hours of MoCap data for a simulated humanoid in the dm_control physics-based envi-

ronment. We release MoCapAct, a dataset of these expert agents and their rollouts, which

contain proprioceptive observations and actions. We demonstrate the utility of MoCapAct

by using it to train a single hierarchical policy capable of tracking the entire MoCap dataset

within dm_control and show the learned low-level component can be re-used to efficiently

learn downstream high-level tasks. Finally, we use MoCapAct to train an autoregressive

GPT model and show that it can control a simulated humanoid to perform natural motion

completion given a motion prompt. Videos of the results and links to the code and dataset

are available at the project website (microsoft.github.io/MoCapAct).

95

https://microsoft.github.io/MoCapAct

8.1 Introduction

The wide range of human physical capabilities makes simulated humanoids a compelling

platform for studying motor intelligence. Learning and utilization of motor skills is a

prominent research topic in machine learning, with advances ranging from emergence of

learned locomotion skills in traversing an obstacle course (Heess et al., 2017) to the pick-

ing up and carrying of objects to desired locations (Merel, Tunyasuvunakool, et al., 2020;

Peng, Chang, et al., 2019) to team coordination in simulated soccer (Liu et al., 2022).

Producing natural and physically plausible human motion animation (Harvey et al., 2020;

Kania et al., 2021; Yuan and Kitani, 2020) is an active research topic in the game and movie

industries. However, while physical simulation of human capabilities is a useful research

domain, it is also very challenging from a control perspective. A controller must contend

with an unstable, discontinuous, and high-dimensional system that requires a high degree

of coordination to execute a desired motion.

Tabula rasa learning of complex humanoid behaviors (e.g., navigating through an ob-

stacle field) is extremely difficult for all known learning approaches. In light of this chal-

lenge, motion capture (MoCap) data has become an increasingly common aid in humanoid

control research (Merel, Tassa, et al., 2017; Peng, Abbeel, et al., 2018). MoCap trajec-

tories contain kinematic information about motion: they are sequences of configurations

and poses that the human body assumes throughout the motion in question. This data can

alleviate the difficulty of training sophisticated control policies by enabling a simulated hu-

manoid to learn low-level motor skills from MoCap demonstrations. The low-level skills

can then be re-used for learning advanced, higher-level motions. Datasets such as CMU

MoCap (CMU, 2003), Human3.6M (Ionescu et al., 2013), and LaFAN1 (Harvey et al.,

2020) offer hours of recorded human motion, ranging from simple locomotion demonstra-

tions to interactions with other humans and objects.

However, since MoCap data only offers kinematic information, utilizing it in a physics

96

CMU MoCap
Clip Snippets

Expert
Policies

Multi-Clip Policy

Distillation

MoCapAct Dataset

Noisy
Rollouts

Trajectories
Single-Clip
Tracking
via RL

Supervised Learning

GPT

Figure 8.1: The MoCapAct dataset includes expert policies that are trained to track indi-
vidual clips. A dataset of noise-injected rollouts (containing observations and actions) is
then collected from each expert. These rollouts can subsequently be used to, for instance,
train a multi-clip or GPT policy.

simulator requires recovering the actions (e.g., joint torques) that induce the sequence of

kinematic poses in a given MoCap trajectory (i.e., track the trajectory). While easier than

tabula rasa learning of a high-level task, finding an action sequence that makes a humanoid

track a MoCap sequence is still non-trivial. For instance, this problem has been tackled with

reinforcement learning (Chentanez et al., 2018; Merel, Hasenclever, et al., 2019; Peng,

Abbeel, et al., 2018) and adversarial learning (Merel, Tassa, et al., 2017; Z. Wang et al.,

2017). The computational burden of finding these actions scales with the amount of MoCap

data, and training agents to recreate hours of MoCap data requires significant compute. As

a result, despite the broad availability of MoCap datasets, their utility—and their potential

for enabling research progress on learning-based humanoid control—has been limited to

institutions with large compute budgets.

To remove this obstacle and facilitate the use of MoCap data in humanoid control re-

search, we introduce MoCapAct (Motion Capture with Actions, Fig. 8.1), a dataset of

97

high-quality MoCap-tracking policies for a MuJoCo-based (Todorov et al., 2012) simu-

lated humanoid as well as a collection of rollouts from these expert policies. The policies

from MoCapAct can track 3.5 hours of recorded motion from CMU MoCap (CMU, 2003),

one of the largest publicly available MoCap datasets. We analyze the expert policies of

MoCapAct and, to illustrate MoCapAct’s usefulness for learning diverse motions, use the

expert rollouts to train a single hierarchical policy which is capable of tracking all of the

considered MoCap clips. We then re-use the low-level component of the policy to effi-

ciently learn downstream tasks via reinforcement learning. Finally, we use the dataset for

generative motion completion by training a GPT network (Karpathy, 2020) to produce a

motion in the MuJoCo simulator given a motion prompt.

8.2 Related Work

MoCap Data Of the existing datasets featuring motion capture of humans, the largest and

most cited are CMU MoCap (CMU, 2003) and Human3.6M (Ionescu et al., 2013). These

datasets feature tens of hours of human motion capture arranged as a collection of clips

recorded at 30-120Hz. They demonstrate a wide range of motions, including locomotion

(e.g., walking, running, jumping, and turning), physical activities (e.g., dancing, boxing,

and gymnastics), and interactions with other humans and objects.

MoCap Tracking via Reinforcement Learning To make use of MoCap data for down-

stream tasks, much of prior work first learns individual clip-tracking policies. For instance,

Peng, Abbeel, et al. (2018), Merel, Ahuja, et al. (2019), Merel, Hasenclever, et al. (2019),

and Merel, Tunyasuvunakool, et al. (2020) use reinforcement learning (RL) to learn the

clip-tracking policies, whereas Merel, Tassa, et al. (2017) use adversarial imitation learn-

ing. Upon learning the tracking policies, there are a variety of ways to utilize them. Peng,

Abbeel, et al. (2018) and Merel, Tassa, et al. (2017) and Merel, Ahuja, et al. (2019) learn

a skill-selecting policy to dynamically choose a clip-tracking policy to achieve new tasks.

98

Merel, Hasenclever, et al. (2019) and Merel, Tunyasuvunakool, et al. (2020) instead opt

for a distillation approach, whereby they collect rollouts from the clip-tracking policies

and then train a hierarchical multi-clip policy via supervised learning on the rollouts. The

low-level policy is then re-used to aid in learning new high-level tasks.

Alternatively, large-scale RL may be used to learn a single policy that covers the Mo-

Cap dataset. Hasenclever et al. (2020) use a distributed RL setup for the MuJoCo sim-

ulator (Todorov et al., 2012), while Peng, Guo, et al. (2022) use the GPU-based Isaac

simulator (Makoviychuk et al., 2021) to perform RL on a single machine.

While some prior work has released source code to train individual clip-tracking poli-

cies (Peng, Abbeel, et al., 2018; Yuan and Kitani, 2020), their included catalog of policies

is small, and the resources needed to train per-clip policies scale linearly with the number

of MoCap clips. In the process of our work, we found that we needed about 50 years of

wall-clock time to train the policies to track our MoCap corpus using a similar approach to

Peng, Abbeel, et al. (2018).

Motion Completion Outside of the constraints of a physics simulator, learning natural

completions of MoCap trajectories (i.e., producing a trajectory given a prompt trajectory)

is the subject of many research papers (Mourot et al., 2022), typically motivated by the

challenging and labor-intensive process of creating realistic animations for video games

and films. Prior work (Aksan et al., 2021; Harvey et al., 2020; Kania et al., 2021; Mao

et al., 2019; Tevet et al., 2022; B. Wang et al., 2019) typically trains a model to replicate

the kinematic motion found in a MoCap dataset, which is then evaluated according to how

well the model can predict or synthesize motions given some initial prompt on held-out

trajectories.

The more difficult task of performing motion completion within a physics simulator is

not widely studied. Yuan and Kitani (2020) jointly learn a kinematic policy and a tracking

policy, where the kinematic policy predicts future kinematic poses given a recent history

99

Figure 8.2: The humanoid displaying a variety of motions from the CMU MoCap dataset.

of observations and the tracking policy outputs a low-level action to track the predicted

poses.

8.3 The dm_control Humanoid Environment

Our simulated humanoid of interest is the “CMU Humanoid” (Fig. 8.2) from the dm_control

package (Tunyasuvunakool et al., 2020), which contains 56 joints and is designed to be sim-

ilar to an average human body. The humanoid contains a rich and customizable observation

space, from proprioceptive observations like joint positions and velocities, actuator states,

and touch sensor measurements to high-dimensional observations like images from an ego-

centric camera. The action a is the desired joint angles of the humanoid, which are then

converted to joint torques via some pre-defined PD controllers. The humanoid operates in

the MuJoCo simulator (Todorov et al., 2012).

The dm_control package contains a variety of tools for the humanoid. The package

comes with pre-defined tasks like navigation through an obstacle field (Heess et al., 2017),

maze navigation (Merel, Ahuja, et al., 2019), and soccer (Liu et al., 2022), and a user may

create custom tasks with the package’s API. The dm_control package also integrates 3.5

hours of motion sequences from the CMU Motion Capture Dataset (CMU, 2003), including

clips of locomotion (standing, walking, turning, running, jumping, etc.), acrobatics, and

arm movements. Each clip C is a reference state sequence (ŝC0 , ŝ
C
1 , . . . , ŝ

C
TC−1), where

TC is the clip length and each ŝCt contains kinematic information like joint angles, joint

velocities, and humanoid pose.

100

https://github.com/deepmind/dm_control
https://github.com/deepmind/dm_control
http://mocap.cs.cmu.edu/

As discussed in Section 8.2, training a control policy to work on all of the included clips

requires large-scale solutions. For example, Hasenclever et al. (2020) rely on a distributed

RL approach that uses about ten billion environment interactions collected by 4000 parallel

actor processes running for multiple days. To our knowledge, there are no agents publicly

available that can track all the MoCap data within dm_control. We address this gap by

releasing a dataset of high-quality experts and their rollouts for the “CMU Humanoid” in

the dm_control package.

8.4 MoCapAct Dataset

The MoCapAct dataset (Fig. 8.1) consists of:

• Experts, each trained to track an individual snippet from the MoCap dataset (Sec-

tion 8.4.1) and

• HDF5 files containing rollouts from the aforementioned experts (Section 8.4.2).

We include documentation of the MoCapAct dataset in Section C.1.

8.4.1 Clip Snippet Experts

Our expert training scheme largely followed that of Merel, Ahuja, et al. (2019), Merel,

Hasenclever, et al. (2019), and Peng, Abbeel, et al. (2018), which we now summarize.

Training We split each clip in the MoCap dataset into 4–6 second snippets with 1-second

overlaps. With 836 clips in the MoCap dataset, this clip splitting resulted in 2589 snip-

pets. For each clip snippet c, we trained a time-indexed Gaussian policy πc(a|s, t) to track

the snippet. We used the same clip-tracking reward function rc(s, t) as Hasenclever et al.

(2020), which encourages matching the MoCap clip’s joint angles and velocities, posi-

tions of various body parts, and joint orientations. This reward function lies in the inter-

val [0, 1.45]. To speed up training, we used the same early episode termination condition

101

Table 8.1: Snippet expert results on the MoCap snippets within dm_control. We disable
the Gaussian noise for πc when computing these results.

Mean Standard deviation Median Minimum Maximum
Avg. normalized episode reward 0.816 0.153 0.777 0.217 1.233
Avg. normalized episode length 0.997 0.022 1.000 0.424 1.000

as Hasenclever et al. (2020), which activates if the humanoid deviates too far from the

snippet. To help exploration, the initial state of an episode was generated by randomly

sampling a time step from the given snippet. The Gaussian policy πc uses a mean param-

eterized by a neural network as well as a fixed standard deviation of 0.1 for each action to

induce robustness and to prepare for the noisy rollouts (Section 8.4.2). We used the Stable-

Baselines3 (Raffin et al., 2021) implementation of PPO (Section 6.1) to train the experts.

Our training took about 50 years of wall-clock time. We give hyperparameters and training

details in Section C.2.1.

Results To account for the snippets having different lengths and for the episode initial-

ization scheme used in training, we report our evaluations in a length-normalized fashion.1

For a snippet c (with length Tc) and some policy π, recall that we initialize the humanoid

at some randomly chosen time step t0 from c and then generate the trajectory τ by rolling

out π from t0 until either the end of the snippet or early termination. Let R(τ) and L(τ)

denote the accumulated reward and the length of the trajectory τ , respectively. We define

the normalized episode reward and normalized episode length of τ as R(τ)
Tc−t0 and L(τ)

Tc−t0 , re-

spectively. One consequence of this definition is that trajectories that are terminated early

in a snippet yield smaller normalized episode rewards and lengths. Next, we define the

average normalized episode reward and average normalized episode length of policy π on

snippet c as R̂c(π) = Et0∼c Eτ∼π|t0
[
R(τ)
Tc−t0

]
and L̂c(π) = Et0∼c Eτ∼π|t0

[
L(τ)
Tc−t0

]
, respectively.

For example, if π always successfully tracks some MoCap snippet from any t0 to the end

of the snippet, π has an average normalized episode length of 1 on snippet c.

1We point out that PPO uses the original unnormalized reward for policy optimization.

102

0.2 0.4 0.6 0.8 1.0 1.2

Average normalized episode reward R̂c(πc)

0

100

200

300

400

N
um

be
ro

fe
xp

er
tp

ol
ic

ie
s

0.980 0.985 0.990 0.995 1.000

Average normalized episode length L̂c(πc)

0

500

1000

1500

2000

N
um

be
ro

fe
xp

er
tp

ol
ic

ie
s

Figure 8.3: Clip expert results on the MoCap snippets within dm_control.

Overall, the clip experts reliably track the overwhelming majority of the MoCap snip-

pets (Table 8.1 and Fig. 8.3). Averaged over all the snippets, the experts have a per-joint

mean angle error of 0.062 radians. We find that 80% of the trained experts have an average

normalized episode length of at least 0.999. We also observe there is a bimodal structure to

the reward distribution in Fig. 8.3, which is due to many clips having artifacts like jittery

limbs and extremities clipping through the ground. These artifacts limit the extent to which

the humanoid can track the clip. Among the handful of experts with very low reward (be-

tween 0.2 and 0.5), we find that the corresponding clips are erroneously sped up, making

them impossible to track in the simulator.

The experts produce motion that is generally indistinguishable from the MoCap ref-

erence (Fig. 8.4), from simple walking behaviors seen in the top row to highly coordi-

nated motions like the cartwheel in the middle row. On some clips, the expert deviates

from the clip because the demonstrated motion is too highly dynamic, such as the 360-

degree jump in the bottom row. Instead, the expert typically learns some other behav-

ior that keeps the episode from terminating early, which in this case is jumping with-

out spinning. We also point out that, in these failure modes, the humanoid still tracks

some portions of the reference, such as hand positions and orientations. Yuan and Kitani

(2020) rectify similar tracking issues by augmenting the action space with external forces

on certain parts of the humanoid body, but we do not explore this avenue since the issue

only affects a small number of clips. We encourage the reader to visit the project web-

103

site (microsoft.github.io/MoCapAct) to see videos of the clip experts.

Figure 8.4: Visualizations of clip experts. The top two rows show episodes (first: walking,
second: cartwheel) where the expert (bronze humanoid) closely tracks the corresponding
MoCap clip (grey humanoid). The bottom row shows a clip where the expert and MoCap
clip differ in behavior. The MoCap clip demonstrates a 360-degree jump, whereas the
expert jumps without spinning.

8.4.2 Expert Rollouts

Following Merel, Hasenclever, et al. (2019), we rolled out the experts on their respective

snippets and collected data from the rollouts into a dataset D. In order to obtain a broad

state coverage from the experts, we repeatedly rolled out the stochastic experts (i.e., with

Gaussian noise injected into the actions) starting from different initial states. This injected

noise helps the dataset cover states that a policy learned by imitating the dataset would

visit, therefore mitigating the distribution shift issue for the learned policy (Laskey et al.,

2017; Merel, Hasenclever, et al., 2019).

For each clip snippet c, we denote the corresponding expert policy as πc(a|s, t) =

N (a;µc(s, t), 0.1
2I), where µc(s, t) is the mean of the expert’s action distribution. We

initialized the humanoid at some point in the snippet c (half of the time at the beginning

of the snippet and otherwise at some random point in the snippet). We then rolled out

πc until either the end of the snippet or early termination using the scheme from Sec-

tion 8.4.1. At every time step t in the rollout, we logged the humanoid state st, the target

104

https://microsoft.github.io/MoCapAct

(a) Multi-clip tracking policy. (b) GPT policy.

Figure 8.5: Policies used in the applications.

reference poses sreft = (ŝct+1, . . . , ŝ
c
t+5) from the next five steps of the MoCap snippet, the

expert’s sampled action at, the expert’s mean action āt = µc(st, t), the observed snippet

reward rc(st, t), the estimated value V̂ πc(st), and the estimated advantage Âπc(st, at) into

HDF5 files.

We release two versions of the rollout dataset:

• A “large” 600-gigabyte collection at 200 rollouts per snippet with a total of 67 million

environment transitions (corresponding to 620 hours in the simulator) and

• A “small” 50-gigabyte collection at 20 rollouts per snippet with a total of 5.5 million

environment transitions (corresponding to 51 hours in the simulator).

In our application of MoCapAct (Section 8.5), we used the “large” version of the dataset.

We do observe, though, that the multi-clip policy results (Section 8.5.1) are similar when

using either dataset.

8.5 Applications

We trained two policies (Fig. 8.5) using our dataset:

1. A hierarchical policy which can track all the MoCap snippets and be re-used for

learning new high-level tasks (Section 8.5.1).

105

2. An autoregressive GPT model which generates motion from a given prompt (Sec-

tion 8.5.2).

8.5.1 Multi-Clip Tracking Policy

We first show that the MoCapAct dataset can reproduce the results in Merel, Hasenclever, et

al. (2019) by learning a single policy that tracks the entire MoCap dataset within dm_control.

Our policy architecture (Fig. 8.5a) follows the same encoder-decoder scheme as Merel,

Hasenclever, et al. (2019), who introduce a “motor intention” zt that acts as a low-dimensional

embedding of the MoCap reference sreft . The intention zt is then decoded into an action at.

In other words, the policy π is factored into an encoder πenc and a decoder πdec. The en-

coder πenc(zt|st, sreft , zt−1) compresses the MoCap reference sreft into an intention zt and

may use the current humanoid state st and previous intention zt−1 in predicting the current

intention. Furthermore, the encoder outputs an intention that is stochastic, which models

ambiguity in the MoCap reference and allows for the high-level behavior to be specified

more coarsely. The decoder πdec(at|st, zt) translates the sampled intention zt into an ac-

tion at with the aid of the state st as an additional input.

Training

In our implementation, the encoder outputs the mean and diagonal covariance of a Gaussian

distribution over a 60-dimensional motor intention zt. The decoder outputs the mean of a

Gaussian distribution over actions with a standard deviation of 0.1 for each action. In

training, we maximized a variant of the multi-step imitation learning objective from Merel,

Hasenclever, et al. (2019):

E(s1:T ,sref1:T ,a1:T ,c)∼D,
z0:T∼πenc

[
T∑

t=1

[
wc(st, at) log πdec(at|st, zt)− βKL(πenc(zt|st, sreft , zt−1) ∥ p(zt|zt−1))

]]
,

where T is the sequence length, wc is a clip-dependent data-weighting function, p(zt|zt−1)

is an autoregressive prior, and β is a hyperparameter.

The weighting function wc allows for some data points to be considered more heavily,

106

which may be useful given the spectrum of expert performance. Letting λ be a hyperpa-

rameter, we consider the following four weighting schemes:

• Behavioral cloning (BC): wc(s, a) = 1. This scheme is commonly used in imitation

learning and treats every data point equally.

• Clip-weighted regression (CWR): wc(s, a) = exp(R̂c(πc)/λ). This scheme up-

weights data from snippets where the experts have higher average normalized re-

wards.

• Advantage-weighted regression (AWR) (Peng, Aviral Kumar, et al., 2019):

wc(s, a) = exp(Âπc(s, a)/λ). This scheme upweights actions that perform better

than the expert’s average return.

• Reward-weighted regression (RWR) (Peters and Schaal, 2007):

wc(s, a) = exp(Q̂πc(s, a)/λ), where Q̂πc(s, a) = V̂ πc(s) + Âπc(s, a). This scheme

upweights state-actions which have higher returns, which typically happens with

good experts at earlier time steps in the corresponding snippet.

The KL divergence term encourages the decoder to follow a simple random walk. In

this case, the prior has the form p(zt|zt−1) = N (zt;αzt−1, σ
2I), where α ∈ [0, 1] is a

hyperparameter and σ =
√
1− α2. This prior in turn encourages the marginals to be a

spherical Gaussian, i.e., p(zt) = N (zt; 0, I). Furthermore, the regularization introduces

a bottleneck (Alemi et al., 2017) that limits the information the intention zt can provide

about the state st and MoCap reference sreft . This forces the encoder to only encode high-

level information about the reference (e.g., direction of motion of leg) while excluding

fine-grained details (e.g., precise velocity of each joint in leg).

In our experiments, we found that the training takes about three hours on a single-GPU

machine. More training details are available in Section C.2.2.

107

Table 8.2: Multi-clip results on the MoCap snippets, showing the mean and standard devi-
ation over three seeds. For evaluation, we disable the Gaussian noise for πdec but keep the
stochasticity for πenc.

BC CWR AWR RWR
Avg. normalized episode reward 0.654± 0.005 0.671± 0.003 0.661± 0.003 0.688± 0.002
Avg. normalized episode length 0.855± 0.004 0.858± 0.003 0.861± 0.001 0.868± 0.002

0.2 0.4 0.6 0.8 1.0 1.2

Average normalized episode reward R̂c(π)

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Training set
Validation set

(a) Multi-clip policy’s performance on train-
ing and validation sets.

0.4 0.6 0.8 1.0 1.2

Performance ratio R̂c(π)/R̂c(πc)

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Training set
Validation set

(b) Performance of multi-clip policy relative
to expert policies.

Figure 8.6: Performance of RWR-trained multi-clip policy.

Results All four regression approaches yielded broadly good results (Table 8.2), achiev-

ing 80% to 84% of the experts’ performance on the MoCap dataset (cf. Table 8.1). We also

see that every weighted regression scheme gave some improvement over the unweighted

approach. AWR only gave 1% improvement over BC, likely because the experts are al-

ready near-optimal and the dataset lacks sufficient state-action coverage to reliably contain

advantageous actions. CWR gave a 3% improvement over BC, which arises from the ob-

jective placing more emphasis on data coming from high-reward clips. Finally, RWR gave

a 5% improvement over BC, which comes from increased weight on earlier time steps in

high-reward clips. This is a sensible weighting scheme since executing a skill requires tak-

ing correct actions at earlier time steps before completing the skill at later time steps. As

a point of comparison to prior work, the RWR-trained policy achieved an average reward-

per-step (i.e., E[R(τ)/L(τ)]) of 0.67 on the “Locomotion” subset of the MoCap data, which

is 96% of the reward-per-step achieved by the large-scale RL approach of Hasenclever et al.

(2020). We also find that the RWR-trained policy had a per-joint mean angle error of 0.085

radians.

To assess the generalization of the multi-clip policy, we trained the policy using RWR

108

on a subset of MoCapAct covering 90% of the MoCap clips. We treated the remaining 10%

of the clips as a validation set when evaluating the multi-clip policy. We found that the

multi-clip policy performs similarly on the training set and validation set clips (Fig. 8.6a),

with the validation set performance even being slightly higher than the training set perfor-

mance (mean of 0.699 vs. 0.674). This was likely because the clips in the validation set are

slightly easier.

To account for the reward scale of the clips, we also report the multi-clip policy’s per-

formance relative to the clip experts (Fig. 8.6b). Again, the training set and validation set

relative performances are very similar, though now the multi-clip policy has a small relative

performance drop in the validation set (mean of 0.797 vs. 0.815). We also observe that the

multi-clip policy outperforms the clip experts on 13% of the MoCap snippets.

We encourage the reader to visit the project website (microsoft.github.io/MoCapAct)

to see videos of the multi-clip policy.

Re-Use for Reinforcement Learning

We re-used the decoder πdec from an RWR-trained multi-clip policy for reinforcement

learning to constrain the behaviors of the humanoid and speed up learning. In particular,

we studied two tasks that require adept locomotion skills:

1. A sparse-reward go-to-target task, where the agent receives a non-zero reward only

if the humanoid is sufficiently close to the target. The target relocates once the hu-

manoid stands on it for a few time steps.

2. A velocity control task, where shaped rewards encourage the humanoid to go at a

given speed in a given direction. The desired speed and direction change randomly

every few seconds.

We treat πdec as part of the environment and the motor intention z as the action. We thus

learn a new high-level policy πtask(z|s) that steers the low-level policy to maximize the

109

https://microsoft.github.io/MoCapAct

Table 8.3: Returns for the transfer tasks, showing the mean and standard deviation over five
seeds.

General low-level policy Locomotion low-level policy No low-level policy
Go-to-target 96.3± 2.8 66.1± 32.8 7.5± 1.1

Velocity control 1074± 55 884± 81 1157± 89

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time steps ×108

0

25

50

75

100

E
pi

so
de

re
tu

rn

Go-to-target task

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time steps ×108

0

500

1000

E
pi

so
de

re
tu

rn

Velocity control task

General low-level policy Locomotion low-level policy No low-level policy

Figure 8.7: Training curves for transfer tasks. All experiments use five seeds.

task reward.

Given the tasks are locomotion-driven, we also considered a more specialized decoder

with a 20-dimensional intention which was trained solely on locomotion clips from MoCa-

pAct (called the “Locomotion” subset) to see if further restricting the learned skills offers

any more speedup. As a baseline, we also performed RL without a low-level policy.

We find that re-using a low-level policy drastically sped up learning and usually pro-

duced higher returns (Table 8.3 and Fig. 8.7). For the go-to-target task, the locomotion-

based low-level policy induced faster training than the more general low-level policy, though

it did converge to lesser performance and on one out of five seeds converged to a very low

reward. This performance gap was likely a combination of the lower dimensionality of the

locomotion policy restricting the degree of control by the high-level policy and the “Loco-

motion” subset excluding some useful behaviors, a result also found by Hasenclever et al.

(2020). The baseline without the low-level policy failed to learn the task. For the velocity

control task, the locomotion-based policy induced slightly faster learning than the general

policy but again resulted in lower reward. The baseline without the low-level policy learned

the task more slowly, though it did achieve high reward eventually.

110

In both tasks, we find that including a pre-trained low-level policy produced much

more realistic gaits. The humanoid efficiently ran from target to target in the go-to-target

task and smoothly changed speeds and direction of motion in the velocity control task.

On the other hand, the baseline approach produced unusual motions. In the go-to-target

task, the humanoid convulsed and contorted itself towards the first target before falling

to the ground. In the velocity control task, the humanoid rapidly tapped the feet to pro-

pel the body at the desired velocity. We encourage the reader to visit the project web-

site (microsoft.github.io/MoCapAct) to see videos of the RL results.

8.5.2 Motion Completion with GPT

We also trained a GPT model (Radford, Narasimhan, et al., 2018; Radford, Wu, et al., 2019)

based on the minGPT implementation (Karpathy, 2020) to generate motion. Starting with

a motion prompt (sequence of humanoid observations generated by a clip expert), the GPT

policy (Fig. 8.5b) autoregressively predicts actions from the context of recent humanoid

observations. We trained the GPT by sampling 32-step sequences (corresponding to 1

second of motion) of humanoid observations s(t−31):t and expert’s mean actions ā(t−31):t

from the MoCapAct dataset D and performing supervised learning using the mean squared

error loss on the predicted action sequence.

To roll out the policy, we provide the GPT policy with a 32-step prompt from a clip

expert and let GPT roll out thereafter. The episode either terminates after 500 steps (about

15 seconds) or if a body part other than the feet touches the ground (e.g., humanoid falling

over). On many clip snippets, the GPT model was able to control the humanoid for sev-

eral seconds past the end of the prompt (Table 8.4 and Fig. 8.8a), with similar lengths on

the training set and a held-out validation set of prompts. We also observed that on many

clips the GPT can control the humanoid for several times longer than the length of the

corresponding clip snippet (Table 8.4 and Fig. 8.8b).

To visualize the rollouts, we performed principal component analysis (PCA) on action

111

https://microsoft.github.io/MoCapAct

Table 8.4: Motion completion statistics on the MoCap snippets.

Mean Standard deviation Median Minimum Maximum
Episode length (seconds) 5.47 3.47 4.38 0.23 15.00

Relative episode length 1.15 0.94 0.87 0.05 7.63

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Episode length (seconds)

0.00

0.05

0.10

0.15

D
en

si
ty

Training set
Validation set

(a) Absolute episode lengths of GPT.

0 1 2 3 4 5 6 7

Ratio of GPT episode length to snippet length

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

Training set
Validation set

(b) Relative episode lengths of GPT.

Figure 8.8: Episode lengths of GPT on MoCap snippets.

Expert
GPT

(a) Locomotion clip
where behaviors align.

Expert
GPT

(b) Locomotion clip
where behaviors differ.

Expert
GPT

(c) Non-locomotion clip
where behaviors differ.

Figure 8.9: PCA projections of action sequences of length 32 from experts and GPT.

sequences of length 32 applied by GPT and the snippet expert used to generate the motion

prompt (Fig. 8.9). Qualitatively, we find that GPT usually repeated motions demonstrated

in locomotion prompts, such as the running motion corresponding to Fig. 8.9a. Occasion-

ally, GPT produced a different motion than the underlying clip, usually due to ambiguity in

the prompt. For example, in Fig. 8.9b, GPT had the humanoid repeatedly step backwards,

whereas the expert took repeated side steps. In Fig. 8.9c, the GPT policy performed an

entirely different arm-waving motion than that of the expert. We encourage the reader to

visit the project website (microsoft.github.io/MoCapAct) to see videos of GPT motion

completion.

112

https://microsoft.github.io/MoCapAct

8.6 Discussion

We presented a dataset of high-quality MoCap-tracking policies and their rollouts for the

dm_control humanoid environment. From these rollouts, we trained multi-clip tracking

policies that can be re-used for new high-level tasks and GPT policies which can generate

humanoid motion when given a prompt. We have open sourced our dataset, models, and

code under permissive licenses.

We do point out that our models and data are only applicable to the dm_control envi-

ronment, which uses MuJoCo as the backend simulator. We also point out that all consid-

ered clips only occur on flat ground and do not include any human or object interaction.

Though this seems to limit the environments and tasks where this dataset is applicable, the

dm_control package (Tunyasuvunakool et al., 2020) has tools to change the terrain, add

more MoCap clips, and add objects (e.g., balls) to the environment. Indeed, prior work has

used custom clips which include extra objects (Merel, Tunyasuvunakool, et al., 2020; Liu

et al., 2022). While the dataset and domain may raise concerns on automation, we believe

the considered simulated domain is limited enough to not be of ethical import.

This work significantly lowers the barrier of entry for simulated humanoid control,

which promises to be a rich field for studying multi-task learning and motor intelligence.

In addition to the showcases presented, we believe this dataset can be used in training other

policy architectures like decision and trajectory transformers (Chen et al., 2021; Janner et

al., 2021) or in setups like offline reinforcement learning (Fu et al., 2020; Levine, Aviral

Kumar, et al., 2020) as the dataset allows research groups to bypass the time- and energy-

consuming process of learning low-level motor skills from MoCap data.

113

CHAPTER 9

DISCUSSION

We have explored structured ways we can use data and learning in robotic control. We fo-

cused on two paradigms: model predictive control (MPC) and reinforcement learning (RL).

Within MPC, we showed how neural networks could be used in place of traditional sys-

tem identification techniques to represent dynamics models (Chapter 4). We showed that

they could accurately learn complex phenomena and be used as part of an MPC frame-

work for performant control. We also re-examined MPC from an online learning perspec-

tive (Chapter 5) and propose a general MPC algorithm based on dynamic mirror descent.

This general algorithm contains various well-known MPC algorithms as special cases and

exposes various shared hyperparameters. Within RL, we showed that data can be used as

side information to guide the learning process. In the safe reinforcement learning setting,

we showed that safety interventions can be used as a reward signal to teach an agent to

become safe (Chapter 7). We proposed a safe RL algorithm based on this idea and showed

that this algorithm comes with strong theoretical guarantees on the trained agent’s safety

and performance when safety interventions are disabled. In the simulated humanoid con-

trol setting, we leveraged hours of human motion capture (MoCap) data to teach agents

natural and agile motions (Chapter 8). We generated an embodied dataset of these motions

and used it to bootstrap behaviors for use in downstream RL and motion completion.

This thesis has only studied learning for control in contexts where the controller ob-

serves low-dimensional physical states. In our experiments, this corresponded to either

ground-truth states when done in simulation or with high-quality state estimators when

done in the real world. An interesting line of future work would be to expand the purview

of learning to include perception so as to map directly from high-dimensional observations

like images to actions. Indeed, this is an active area of research in the community and has

114

yielded impressive results on a wide variety of robotic platforms (Ananye Agarwal et al.,

2023; Levine, Pastor, et al., 2018; Pan et al., 2020; Pinto and Gupta, 2016; Stachowicz et

al., 2023; Zhuang et al., 2023). That said, though end-to-end policies offer the chance for

a policy to learn to make up for perceptional defects (Levine, Finn, et al., 2016), it remains

challenging to train end-to-end policies that have the same general capabilities as hierarchi-

cal and engineered robotic statcks (including those augmented with learning) (Roy et al.,

2021; Sünderhauf et al., 2018).

One emerging trend in machine learning is to rely on extremely large and diverse

datasets (Kirillov et al., 2023; Radford, Wu, et al., 2019) to train foundation models (Bom-

masani et al., 2021) that can be transferred to downstream tasks. Such models have been

pivotal in the language domain (Brown et al., 2020; OpenAI, 2023). Another interesting

line of future work would be to see if large-scale robotic data is sufficient to train capable

robotic agents in lieu of traditional robotic methods. Similar efforts to curate large and di-

verse datasets and train corresponding models are being made in the robotics domain (Bro-

han et al., 2022; Collaboration et al., 2023; Reed et al., 2022; Zitkovich et al., 2023).

However, it’s not clear if robot data alone is sufficient to have a learned model deal with

issues of embodiment or whether scaling laws that hold for language models (Henighan

et al., 2020; Kaplan et al., 2020) transfer to learned robotic models.

Besides access to large amounts of data, another driving factor in modern machine

learning successes has been proper architectural structure in neural nets, such as convolu-

tional layers (Fukushima, 1980; Krizhevsky et al., 2012; LeCun, Bottou, et al., 1998) for

vision and attention layers (Vaswani et al., 2017) for language. It is unclear if a different

kind of structure is needed for the embodied domain, such as physics-informed (Greydanus

et al., 2019) or planning layers (Amos et al., 2018; Srinivas et al., 2018; Tamar et al., 2016).

Given the reliance of structure in robotics, it would be interesting to see if any such struc-

ture could be incorporated into a neural network for embodied agents that can both provide

enough flexibility to maximally learn from data while giving enough inductive biases to

115

have the agent generalize to new scenarios.

Some Lessons Learned

• Sampling-based MPC is surprisingly effective. Sampling-based MPC essentially re-

lies on a coarse strategy: Sample many different control trajectories, and pick the one

with minimum cost. Despite throwing away all structure in the dynamics and cost

by treating them as a black-box, this sampling-based strategy can be highly effective

at solving robotic tasks. We’ve already showed that it can solve high-speed, off-road

driving (Chapters 4 and 5), but it has also been successfully applied to quadruped

locomotion (Yang et al., 2020), humanoids (Howell et al., 2022), and manipula-

tion (Lowrey et al., 2019; Bhardwaj, Sundaralingam, et al., 2021). Also, while it

may be tempting to say that it needs thousands of samples to solve tasks, prior work

has shown that sampling-based MPC can solve high-dimensional (and potentially

unstable) problems with 10 to 100 samples (Howell et al., 2022; Lowrey et al., 2019;

Bhardwaj, Handa, et al., 2020). We have also shown that a smaller step size can mit-

igate the noisiness arising from few samples (Section 5.5.2). Since sampling-based

MPC works most efficiently on GPUs and more GPU-accelerated physics simulators

are becoming availabile (Freeman et al., 2021; Makoviychuk et al., 2021), sampling-

based MPC may become a more widely adopted tool in robotic control.

• Transformers can be effective at learning from data for control. Taking MoCa-

pAct (Chapter 8) as a case study, transformers like GPT can quite competently con-

trol high-dimensional systems like humanoids if trained on enough data. This can

include reliably repeating motions conveyed in a prompt for several times the dura-

tion of the corresponding MoCap clip (video link). The transformer’s high learning

capacity can allow it to imitate motions with low data coverage (like cartwheels) that

other architectures like recurrent networks struggle with (GPT video link, recurrent

network video link).

116

https://mhauskn.github.io/mocapact.github.io/assets/gpt/videos/CMU_008_02.mp4
https://mhauskn.github.io/mocapact.github.io/assets/gpt/videos/CMU_049_06.mp4
https://mhauskn.github.io/mocapact.github.io/assets/multiclip/CMU_049_07.mp4
https://mhauskn.github.io/mocapact.github.io/assets/multiclip/CMU_049_07.mp4

Furthermore, like in language models (Radford, Wu, et al., 2019), transformers ap-

pear to benefit from learning on diverse data for the control setting. As a preliminary

experiment to demonstrate this, I trained a GPT policy on the 200 rollouts that track a

single jogging clip (video link) from the MoCapAct dataset. This specialized jogging

policy consistently fails at reproducing the jogging motion (video link), while the

“generalist” GPT policy trained on the entire MoCapAct dataset can reliably achieve

the jogging motion (video link). This particular jogging motion is not conveyed in

any other clip from MoCapAct, so the generalist GPT policy must be taking advan-

tage of information contained in the other demonstrations, such as how the joints in

a leg generally move together, in making its decision.

Nonetheless, transformers can still be brittle in the control setting. Prompts that

are sufficiently out-of-distribution (even if not dramatically different than prompts in

the training set) can cause the policy to immediately fail (video link 1, video link 2).

Also, the policy tends to repeat motions indefinitely rather than transitioning between

motions, limiting its capabilities. It would be interesting to investigate how to make

the policy more robust (e.g., through RL-fine-tuning) and its overall behavior more

controllable via interaction (e.g., through extra inputs given by a human user).

• Good reward functions are hard to design. Usually, reward functions are manually

designed by the user. Because of this, an improperly designed reward function can

be exploited by an optimized policy to produce ultimately undesired behavior (Clark

and Amodei, 2016; Amodei et al., 2016). Furthermore, the weights of the reward

function are typically set by hand in an iterative process. This makes reward design

and tuning a laborious and often opaque process.

As a working example, we consider the task of having a quadruped robot track user-

given velocity commands (J. Lee et al., 2020). Typically, hand-designed reward terms

are included to regularize the motion (J. Lee et al., 2020; Ashish Kumar et al., 2021;

117

https://mhauskn.github.io/mocapact.github.io/assets/clip_expert/deterministic/CMU_038_03-0-208.mp4
https://mhauskn.github.io/mocapact.github.io/assets/gpt/videos/CMU_038_03_overfit.mp4
https://mhauskn.github.io/mocapact.github.io/assets/gpt/videos/CMU_038_03.mp4
https://mhauskn.github.io/mocapact.github.io/assets/gpt/videos/CMU_069_12.mp4
https://mhauskn.github.io/mocapact.github.io/assets/gpt/videos/CMU_056_06.mp4

Margolis et al., 2022; Rudin et al., 2022). The terms corresponding to the gait (e.g.,

foot contact forces, joint angle ranges) tend to affect the gait in an indirect and un-

interpretable manner. This also makes the learned gait very sensitive to other hy-

perparameters such as choice of observation space (gait when policy has access to

domain randomization parameters, gait when policy does not have access to domain

randomization parameters) or PD gain settings (learned gait with default PD gains,

learned gait with larger PD gains).

An alternative approach is to rely on data as a form of regularization. Usually, the

data comes in the form of kinematic trajectories to track and can either come from

motion capture of dogs (Peng, Coumans, et al., 2020) or trajectory optimization (Fu-

chioka et al., 2023). The perscribed motion can be tracked with either a hand-crafted

reward (Peng, Coumans, et al., 2020; Fuchioka et al., 2023; Smith et al., 2022) or an

adversarial approach that automatically learns the tracking reward (Escontrela et al.,

2022; Y. Wang et al., 2023). One appealing outcome of this approach is that tracking

the perscribed motions tends to automatically satisfy the hand-crafted regularization

that would normally be included (e.g., low joint toruqes, proper base height). Thus,

the motion imitation reward term can be used in place of hand-crafted regulariza-

tion terms. Furthermore, since the perscribed motion acts as a strong learning signal,

the learned motion is much more robust to hyperparameters like choice of joint PD

gains (learned gait with default PD gains, learned gait with larger PD gains). How-

ever, this approach requires access to high-quality data with enough information to

properly ground the motion. This may not be applicable if the data is hard to ob-

tain or if it is misaligned with the task (e.g., morphological differences between data

source and the robot).

It is not clear if there is a good middle ground between hand-designed rewards and in-

corporating data into the reward function. C. Li et al. (2022) show that rough demon-

strations combined with a smaller number of hand-crafted regularization terms are

118

https://drive.google.com/file/d/1wgI_H5414_WS1UgQrW4PfQngq3YvgQ5y/view
https://drive.google.com/file/d/1wgI_H5414_WS1UgQrW4PfQngq3YvgQ5y/view
https://drive.google.com/file/d/1ZgQAYz1wqhyInicj5dRrV4KMRUKe4Q7K/view
https://drive.google.com/file/d/1ZgQAYz1wqhyInicj5dRrV4KMRUKe4Q7K/view
https://drive.google.com/file/d/1ZgQAYz1wqhyInicj5dRrV4KMRUKe4Q7K/view
https://drive.google.com/file/d/1idkIWeR6mIzetw1TREfOzzSglucGQUbj/view?usp=sharing
https://drive.google.com/file/d/1uMQqAzSdbRhCtsTwX8J86_K_cOi0-Fu9/view?usp=sharing
https://drive.google.com/file/d/15FsuO5m2RQjdinA_p9j6PMdEuS5kJ6YK/view?usp=sharing

sufficient achieve maneuvers such as backflips. A compelling alternative to structur-

ing the reward process would be to rely on human feedback via preferences (Chris-

tiano et al., 2017; Ouyang et al., 2022) to automatically shape the reward or to use

large language models (Ma et al., 2023) to form a curriculum over reward functions.

119

Appendices

120

APPENDIX A

SYSTEM DESCRIPTIONS FOR PART I

A.1 Cartpole

The state is x = (p, φ, ṗ, φ̇), where p is the cart position, φ is the pole’s angle, ṗ and φ̇ are

the corresponding velocities, and the control u is the force applied to the cart. The cart has

mass mc, and the pole has mass mp and length ℓ. The equations of motion for the cartpole

are:

p̈ =
1

mc +mp sin
2 φ

(
u+mp sinφ (ℓφ̇2 + g cosφ)

)
φ̈ =

1

ℓ(mc +mp sin
2 φ)

(
−u cosφ−mpℓφ̇

2 sinφ cosφ− (mc +mp)g sinφ
)
,

where g = 9.81 m/s2 is the gravitational acceleration. We give the system parameters

for the cartpole in Table A.1. The modeled dynamics p̂ in Section 5.5.1 uses a length of

0.346 m.

Each time step is modeled using an Euler discretization of 0.02 seconds. Each episode

of the problem lasts 500 time steps (i.e, 10 seconds) and has episode cost equal to the

sum of encountered instantaneous costs. Both the true system and the model apply Gaus-

sian additive noise to the commanded control with zero mean and a standard deviation of

5 newtons. For the continuous system, the commanded control is clamped to ±25 new-

tons. For the discrete system, the controller can either command 10 newtons to the left, 10

newtons to the right, or 0 newtons.

Both the discrete and continuous controller use a planning horizon of 50 time steps (i.e.,

1 second). For the continuous controller, we keep the standard deviation of the Gaussian

distribution fixed at 2 newtons for each time step in the planning horizon. When applying

121

Table A.1: Parameters for cartpole

mc (kg) mp (kg) ℓ (m)
Section 4.5.1 1 0.01 0.25
Section 5.5.1 0.711 0.209 0.326

a control ut on the real cartpole, we choose the mode of πθt rather than sample from the

distribution.

We use two forms of the cost functions:

Section 4.5.1 c(x, u) = cterm(x) = 10p2 + 500(cosφ+ 1)2 + ṗ2 + 15φ̇2

Section 5.5.1 c(x, u) = cterm(x) = 10p2 + 500(φ− π)2 + ṗ2 + 15φ̇2 + 1000 · 1{|φ− π| ≥ ∆},

where ∆ is some threshold. For our experiments, we set ∆ = 12◦ = 0.21 rad.

A.2 Quadrotor

We use the same system definition as that given by Appendix E of Williams, Aldrich, et al.

(2017). We use the quadrotor model from Michael et al. (2010), but we treat body frame

angular velocity rates and net thrust as control inputs. The cost function has the form:

c(x, u) = cterm(x) = (x− x⋆)TQ(x− x⋆) + 105 · 1crash(x)

x⋆ = (50, 50, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Q = diag(1, 1, 1, 25, 25, 25, 1, 1, 1, 1, 1, 1)

Here, (50, 50, 5) indicates the position target, and the indicator variable 1crash(x) which is

1 if the quadrotor crashes into an obstacle or the ground and 0 otherwise.

122

A.3 AutoRally

The state of the vehicle is x = (px, py, φ, r, vx, vy, φ̇), where (px, py) is the position of the

car in the global frame, φ and r are the yaw and roll angles, vx and vy are the longitudinal

and lateral velocities in the car frame, and φ̇ is the yaw rate. The control u we apply is the

throttle and steering angle. For some weights ws, wM , wslip, wcrash, the cost function is

c(x, u) = ws|s− s⋆|k + wMM(px, py) + wslip 1slip(x)

cterm(x) = wcrash 1crash(x).

Here, s and s⋆ are the current and target speed of the car, respectively. Note the speed is

calculated as s =
√
v2x + v2y . M(px, py) is the positional cost of the car (low cost in center

of track, high cost at edge of track), 1slip(x) is an indicator variable which activates if the

slip angle1 exceeds a certain threshold, and 1crash(x) is an indicator function which activates

if the car leaves the track at all in the trajectory. Note that the terminal cost depends on the

trajectory instead of the terminal state. Each time step represents 0.02 seconds for every

experiment except the real-world experiment with a target of 11 m/s where each time step

represents 0.025 seconds. The length of the planning trajectory is 100 time steps (i.e., either

2 seconds or 2.5 seconds depending on the length of the time step). The values for the cost

function parameters are given in Table A.2.

The control space for each of the throttle and steering angle is normalized to the range

[−1, 1]. For our experiments, we clamp the throttle to [−1, 0.65]. In simulated experiments,

the standard deviations of the throttle and steering angle distributions were 0.3 and 0.275,

respectively. In the real world experiments, they were both set to 0.3. When applying a

control ut on the car, we chose the mean of πθt rather than sampling from the distribution.

In simulation, the environment (Fig. 5.7) is an elliptical track approximately 3 meters

1The slip angle is defined as − arctan
vy
|vx| , which gives the angle between the direction the car is pointing

and the direction in which it is actually traveling.

123

Table A.2: Cost function settings for AutoRally experiments.

s⋆ (m/s) k ws wM wslip wcrash Slip angle threshold (rad)
Gazebo simulator 11 1 30 250 10 105 0.275

Real world (Section 4.5.2) 9–13 2 2.5 100 50 105 0.275–0.375
Real world (Section 5.5.2) 9 or 11 2 4.25 200 100 105 0.9

wide and 30 meters across at its furthest point. The real-world dirt track is about 5 meters

wide and and has a track length of 170 meters. All reported results for simulated experi-

ments were gathered using 30 consecutive laps in the counter-clockwise direction for each

parameter setting. For real-world experiments, results were gathered using ten laps for each

parameter setting when the target speed is 9 m/s and five laps for 11 m/s.

124

APPENDIX B

SAFE REINFORCEMENT LEARNING USING ADVANTAGE-BASED

INTERVENTION

B.1 Missing Proofs

B.1.1 Useful Lemmas

Lemma 2. For any γ-discounted MDP with reward function r, the identity V π(d0) =

(1− γ)
∑∞

h=0 γ
hUπ

h (d0) holds, where Uπ
h (d0) = Eρπ(τ)[

∑h
t=0 r(st, at)] is the undiscounted

h-step return.

Proof. The proof follows from exchanging the order of summations:

(1− γ)
∞∑
h=0

γhUπ
h (d0) = (1− γ)

∞∑
h=0

γh Eρπ(τ)

[
h∑
t=0

r(st, at)

]

= (1− γ)Eρπ(τ)

[∞∑
t=0

r(st, at)
∞∑
h=t

γh

]

= Eρπ(τ)

[∞∑
t=0

γtr(st, at)

]

= V π(d0)

Lemma 3 (Performance Difference Lemma (Kakade and Langford, 2002; Cheng, Kolobov,

and Alekh Agarwal, 2020)). Let M be an MDP and π be a policy. For any function

f : S → R and any initial state distribution d0, it holds that

V π(d0)− f(d0) =
1

1− γ
Edπ(s,a)[r(s, a) + γ Ep(s′|s,a)[f(s′)]− f(s)]

125

Corollary 1. Let M and M̂ be MDPs with common state and action spaces. For any

policy π, the difference in value functions in M and M̂ satisfies

V π(d0)− V̂ π(d0) =
1

1− γ
Edπ(s,a)[(DπQ̂π)(s, a)]

where Dπ is the temporal-difference operator of M:

(DπQ)(s, a) ≜ (BπQ)(s, a)−Q(s, a),

and Bπ is the Bellman operator of M:

(BπQ)(s, a) ≜ r(s, a) + γ Ep(s′|s,a)[Q(s′, π)].

Proof. Set f = V̂ π and observe that V̂ π(s) = Q̂π(s, π).

B.1.2 Proof of Equivalent CMDP Formulation in Section 3.2

We show that Eq. (7.1) and Eq. (7.2) are the same by proving the equivalence

(1− γ)
∞∑
h=0

γh Pρπ(τ)(τh ⊂ Ssafe) ≥ 1− δ ⇐⇒ V̄ π(d0) ≤ δ. (B.1)

By the definition of the cost function c(s, a) = 1{s = s▷} and absorbing property of

Sunsafe = {s▷, s◦}, we can write

1− Pρπ(τ)(τh ⊂ Ssafe) = Pρπ(τ)(s▷ ∈ τh) = Eρπ(τ)

[
h∑
t=0

c(st, at)

]
(B.2)

126

since s▷ can only appear at most once within τh. Substituting this equality into the negation

of the chance constraint,

1− (1− γ)
∞∑
h=0

γh Pρπ(τ)(τh ⊂ Ssafe) = (1− γ)
∞∑
h=0

γh Eρπ(τ)

[
h∑
t=0

c(st, at)

]

= Eρπ(τ)

[∞∑
t=0

γtc(st, at)

]

= V̄ π(d0),

where the second equality follows from Lemma 2. Therefore, Eq. (B.1) holds.

B.1.3 Proof for Intervention Rules in Section 3.3

Admissible Rules and Pessimism

Proposition 2. If G = (Q̄, µ, η) is σ-admissible, then Q̄µ(s, a) ≤ Q̄(s, a) + σ
1−γ for all

s ∈ Ssafe and a ∈ A.

Proof. The proof follows by repeating the inequality of Q̄.

Q̄(s, a) ≥ c(s, a) + γ Ep(s′|s,a)[Q̄(s′, µ)]− σ

≥ c(s, a) + γ Ep(s′|s,a)
[
c(s′, µ) + γ Ep(s′′|s′,µ)[Q̄µ(s′′, µ)]

]
− (1 + γ)σ

...

≥ Q̄µ(s′, µ)− σ

1− γ
.

Example Intervention Rules

Proposition 3 (Intervention Rules). The following are true.

1. Baseline policy: Given a baseline policy µ of M, G = (Q̄µ, µ, η) or G = (Q̄µ, µ+, η)

is admissible, where µ+ is the greedy policy that treats Q̄µ as a cost.

127

2. Composite intervention: Given K intervention rules {Gk}Kk=1, where each Gk =

(Q̄k, µk, η) is σk-admissible. Define Q̄min(s, a) = mink Q̄k(s, a) and let µmin be

the greedy policy w.r.t. Q̄min, and σmax = maxk σk. Then, G = (Q̄min, µmin, η) is

σmax-admissible.

3. Value iteration: Define T̄ as T̄ Q(s, a) ≜ c(s, a) + γ Ep(s′|s,a)[mina′ Q(s
′, a′)]. If

G = (Q̄, µ, η) is σ-admissible, then Gk = (T̄ kQ̄, µk, η) is γkσ-admissible, where µk

is the greedy policy that treats T̄ kQ̄ as a cost.

4. Optimal intervention: Let π̄⋆ be an optimal policy for M̄, and let Q̄⋆ be the corre-

sponding state-action value function. Then G⋆ = (Q̄⋆, π̄⋆, η) is admissible.

5. Approximation: For σ-admissible G = (Q̄, µ, η), consider Q̂ such that Q̂(s, a) ∈

[0, γ] for all s ∈ Ssafe and a ∈ A. If ∥Q̂ − Q̄∥∞ ≤ δ, then Ĝ = (Q̂, µ, η) is

(σ + (1 + γ)δ)-admissible.

Proof. We show each intervention rule G = (Q̄, µ, η) below satisfies the admissibility

condition

Q̄(s, a) + σ ≥ c(s, a) + γ Ep(s′|s,a)[Q̄(s′, µ)].

For convenience, we define the Bellman operator B̄µ as (B̄µQ)(s, a) ≜ c(s, a)+γ Ep(s′|s,a)[Q(s, µ)].

Then, the admissibility condition can be written as Q̄(s, a) + σ ≥ (B̄µQ̄)(s, a) for any

s ∈ Ssafe and a ∈ A. Also, we write Q̄ ∈ [0, γ] on Ssafe if Q̄(s, a) ∈ [0, γ] for all s ∈ Ssafe

and a ∈ A.

1. Baseline policy: We know G = (Q̄µ, µ, η) is admissible since Q̄µ = B̄µQ̄µ. For G =

(Q̄µ, µ+, η), we have Q̄µ ≥ B̄µ+Q̄µ since µ+ is greedy with respect to Q̄µ. Also, by

the definition of the cost c and transition dynamics P , we know that Q̄µ(s, a) ∈ [0, 1]

for all s ∈ S and a ∈ A. Furthermore, when s ∈ Ssafe, we have c(s, a) and therefore

Q̄µ(s, a) = γ Ep(s′|s,a)[Q̄µ(s′, µ)] ∈ [0, γ].

128

2. Composite intervention: For any k ∈ {1, . . . , K}, the following bound holds:

(B̄µminQ̄min)(s, a) = c(s, a) + γ Ep(s′|s,a)[Q̄min(s
′, µmin)]

≤ c(s, a) + γ Ep(s′|s,a)[Q̄min(s
′, µk)]

≤ c(s, a) + γ Ep(s′|s,a)[Q̄k(s
′, µk)]

≤ Q̄k(s, a) + σk

≤ Q̄k(s, a) + σmax,

where the first inequality comes from µmin being a minimizer of Q̄min, and the second

inequality from Q̄min being a pointwise minimum of {Q̄k}Kk=1. Since this holds for

every k, we conclude:

(B̄µminQ̄min)(s, a) ≤ min
k

[Q̄k(s, a) + σmax]

= min
k
Q̄k(s, a) + σmax

= Q̄min(s, a) + σmax,

which establishes the Bellman bound holds. Finally, since each Q̄k satisfies Q̄k ∈

[0, γ] on Ssafe, we conclude that Q̄min has the same range. Therefore, G is σmax-

admissible.

3. Value iteration: Define the shortcuts Q̄k ≜ T̄ kQ̄, where Q̄0 = Q̄.

We first show that, by policy improvement, we have Q̄k(s, a) ≤ Q̄k−1(s, a) + γk−1σ

129

on Ssafe ×A. We do this by induction. First, we see that:

Q̄1(s, a) = T̄ Q̄0(s, a)

= c(s, a) + γ Ep(s′|s,a)
[
min
a′

Q̄0(s
′, a′)

]
= c(s, a) + γ Ep(s′|s,a)

[
min
a′

Q̄(s′, a′)
]

≤ c(s, a) + γ Ep(s′|s,a)[Q̄(s′, µ)]

≤ Q̄(s, a) + σ

= Q̄0(s, a) + σ.

Now suppose Q̄κ(s, a) ≤ Q̄κ−1(s, a) + γκ−1σ holds on Ssafe ×A for some κ. There-

fore,

Q̄κ+1(s, a) = T̄ Q̄κ(s, a)

= c(s, a) + γ Ep(s′|s,a)
[
min
a′

Q̄κ(s
′, a′)

]
≤ c(s, a) + γ Ep(s′|s,a)

[
min
a′

Q̄κ−1(s
′, a′)

]
+ γκσ

= T̄ Q̄κ−1(s, a) + γκσ

= Q̄κ(s, a) + γκσ.

Using this inequality, we now show that Gk = (Q̄k, µ
k, η) is indeed γkσ-admissible:

Q̄k(s, a) = T̄ Q̄k−1(s, a)

= c(s, a) + γ Ep(s′|s,a)
[
min
a′

Q̄k−1(s
′, a′)

]
≥ c(s, a) + γ Ep(s′|s,a)

[
min
a′

Q̄k(s
′, a′)

]
− γkσ

= T̄ Q̄k(s, a)− γkσ

= B̄µkQ̄k(s, a)− γkσ,

130

where the inequality was used in the third line. This establishes that the Bellman

bound holds.

We prove that Q̄k ∈ [0, γ] on Ssafe by induction. Clearly, Q̄0 = Q̄ ∈ [0, γ] on Ssafe

since G is σ-admissible. Now suppose Q̄κ ∈ [0, γ] on Ssafe for some κ. Then, for

any s ∈ Ssafe and a ∈ A, we have Q̄κ+1(s, a) = γ Ep(s′|s,a)[mina′ Q̄κ(s, a)] ∈ [0, γ].

Therefore, Gk is γkσ-admissible.

4. Optimal intervention: This is a special case of case 1.

5. Approximation: The following holds on Ssafe ×A:

Q̂(s, a) = Q̂(s, a)− Q̄(s, a) + Q̄(s, a)

≥ −δ + (B̄µQ̄)(s, a)− σ

= −δ − σ + c(s, a) + γ Ep(s′|s,a)[Q̄(s′, µ)]

≥ −δ − σ + c(s, a) + γ Ep(s′|s,a)[Q̂(s′, µ)− δ]

= −δ − σ − γδ + B̄µQ̂(s, a).

That is, (B̄µQ̂)(s, a) ≤ Q̂(s, a) + σ + (1 + γ)δ. Therefore, Ĝ = (Q̂, µ, η) is (σ +

(1 + γ)δ)-admissible.

Safety Guarantee of Shielded Policy

Before proving Theorem 2, we prove two lemmas, one showing that the average advantage

of a shielded policy satisfies the intervention threshold (Lemma 4) and the other stating that

the cost-value function is equal to the expected occupancy of the unsafe set (Lemma 5).

Lemma 4. For some policy π and intervention rule G = (Q̄, µ, η), let π′ ≜ G(π) and

Ā(s, a) ≜ Q̄(s, a)− Q̄(s, µ). Then, Ā(s, π′) ≤ η for any s ∈ Ssafe.

131

Proof. We use the definition of π′ (in Eq. (7.4)), the facts that Ā(s, µ) = 0, and that (s, a) /∈

I if and only if Ā(s, a) ≤ η. The following then holds:

Ā(s, π′) =
∑
a∈A

π′(a|s)Ā(s, a)

=
∑

a:(s,a)/∈I
π(a|s)Ā(s, a) + w(s)

∑
a∈A

µ(a|s)Ā(s, a)

≤ η
∑

a:(s,a)/∈I
π(a|s) + w(s)Ā(s, µ)

≤ η · 1 + w(s) · 0

= η.

Lemma 5. For any policy π,

Edπ(s)[1{s ∈ {s▷, s◦}}] = V̄ π(d0).

Proof. We know from the definition of the cost function that V̄ π(d0) =
1

1−γ Edπ(s)[1{s =

s▷}]. From the absorbing property of Sunsafe, we have Edπ(s)[1{s = s◦}] = γ
1−γ Edπ(s)[1{s =

s▷}]. We can then derive

Edπ(s)[1{s ∈ {s▷, s◦}}] = Edπ(s)[1{s = s▷}] + Edπ(s)[1{s = s◦}]

=
1

1− γ
Edπ(s)[1{s = s▷}]

= V̄ π(d0).

We now prove the safety guarantee of the shieled policy π′.

132

Theorem 2 (Safety of Shielded Policy). Let G = (Q̄, µ, η) be σ-admissible as per Defini-

tion 1. For any policy π, let π′ = G(π). Then,

V̄ π′
(d0) ≤ Q̄(d0, µ) +

min{σ + η, 2γ}
1− γ

. (7.9)

Proof.

Q̄(s▷, a) = 1 and Q̄(s◦, a) = 0 for all a ∈ A.

Define V̄ (s) ≜ Q̄(s, µ). Since c(s, a) + γ Ep(s′|s,a)[V̄ (s′)] = V̄ (s) when s ∈ {s▷, s◦},

we can use the performance difference lemma (Lemma 3) to derive

V̄ π′
(d0)− Q̄(d0, µ) =

1

1− γ
Edπ′ (s,a)[c(s, a) + γ Ep(s′|s,a)[V̄ (s′)]− V̄ (s)]

=
1

1− γ
Edπ′ (s,a)[(c(s, a) + γ Ep(s′|s,a)[V̄ (s′)]− V̄ (s))1{s ̸∈ {s▷, s◦}}]

≤ 1

1− γ
Edπ′ (s,a)[(min{σ, γ}+ Q̄(s, a)− V̄ (s))1{s ̸∈ {s▷, s◦}}]

≤ min{σ, γ}+min{η, γ}
1− γ

Edπ′ (s)[1{s ̸∈ {s▷, s◦}}]

=
min{σ, γ}+min{η, γ}

1− γ
V̄ π′

(d0),

where the first inequality comes from Q̄ being σ-admissible and γ-admissible, the second

inequality from Ā(s, π′) ≤ η (Lemma 4) and Ā(s, π′) ≤ γ (Definition 1) for s /∈ {s▷, s◦},

and the last equality from Lemma 5.

Therefore, after some algebraic rearrangement,

V̄ π′
(d0) ≤

(1− γ)Q̄(d0, µ) + min{σ, γ}+min{η, γ}
1− γ +min{σ, γ}+min{η, γ}

≤ Q̄(d0, µ) +
min{σ, γ}+min{η, γ}

1− γ

≤ Q̄(d0, µ) +
min{σ + η, 2γ}

1− γ
.

133

An Optimal Intervention Rule

First, we show that every state-action pair visited by π′ will not have an advantage function

lower than that of the optimal policy for M̄.

Lemma 6. Let π̄⋆ be an optimal policy for M̄, Q̄⋆ be its state-action value function, and

V̄ ⋆ be its state value function. Let G0 = {(Q̄, µ, 0) : (Q̄, µ, 0) is admissible, Q̄(d0, µ) =

V̄ ⋆(d0)} be a subset of admissible intervention rules with a threshold of zero and average

Q̄ that matches V̄ ⋆. Define Ā⋆(s, a) = Q̄⋆(s, a) − Q̄⋆(s, π̄⋆) as the advantage function of

the optimal policy. For some intervention rule G ∈ G0 and policy π, let π′ = G(π).

Then, the inequality Ā(s, a) ≥ Ā⋆(s, a) holds for all a ∈ A almost surely over the

distribution dπ
′
(s).

Proof. First, we show by induction that running π′ starting from d0 results in the agent

staying in the subset SG = {s ∈ S : Q̄(s, µ) = V̄ ⋆(s)}.

For t = 0, consider some s0 ∼ d0. We observe from admissibility of G and Proposi-

tion 2 that Q̄(s, a) ≥ Q̄µ(s, a) ≥ V̄ ⋆(s) on S ×A. Since Q̄(d0, µ) = V̄ ⋆(d0), we conclude

that Q̄(s0, µ) = V̄ ⋆(s0). Therefore, s0 ∈ SG almost surely over d0.

Now suppose the agent is in SG with probability one at some time step t. Consider

some st ∼ ρπ
′ (observing that st ∈ SG). We assume that st ∈ Ssafe (otherwise, the below is

trivially true as there is no intervention outside Ssafe). By Lemma 4 and admissibility, we

134

can derive:

0 = η ≥ Ā(st, π
′)

= Q̄(st, π
′)− Q̄(st, µ)

≥ c(st, π
′) + γ Ep(st+1,st,π′)[Q̄(st+1, µ)]− Q̄(st, µ)

= γ Ep(st+1|st,π′)[Q̄(st+1, µ)]− Q̄(st, µ)

= γ Ep(st+1|st,π′)[Q̄(st+1, µ)]− V̄ ⋆(st)

= γ Ep(st+1|st,π′)[Q̄(st+1, µ)]− γ Ep(st+1|st,π̄⋆)[V̄
⋆(st+1)],

where the second and fourth equalities are due to st ∈ Ssafe, and the third equality is due to

st ∈ SG . Notice also, since st ∈ Ssafe, we have

γ Ep(st+1|st,π′)[V̄
⋆(st+1)] = Q̄⋆(st, π

′) ≥ Q̄⋆(st, π̄
⋆) = γ Ep(st+1|st,π̄⋆)[V̄

⋆(st+1)].

Therefore, combining the two inequalities above, we have

Ep(st+1|st,π′)[V̄
⋆(st+1)] ≥ Ep(st+1|st,π′)[Q̄(st+1, µ)].

Since Q̄(s, a) ≥ V̄ ⋆(s) on S × A, by the same argument we made for s0, we conclude

Q̄(st+1, µ) = V̄ ⋆(st+1) with probability one. Therefore, the agent stays in the subset SG .

With this property in mind, let s ∼ dπ
′ . Then the following holds for all a ∈ A:

Ā(s, a) = Q̄(s, a)− Q̄(s, µ)

= Q̄(s, a)− Q̄⋆(s, π̄⋆)

≥ Q̄⋆(s, a)− Q̄⋆(s, π̄⋆) = Ā⋆(s, a),

where the second equality is due to Q̄(s, µ) = V̄ ⋆(s) = Q̄⋆(s, π̄⋆) on SG .

135

Proposition 4. Let π̄⋆ be an optimal policy for M̄, Q̄⋆ be its state-action value function,

and V̄ ⋆ be its state value function. LetG0 = {(Q̄, µ, 0) : (Q̄, µ, 0) is admissible, Q̄(d0, µ) =

V̄ ⋆(d0)}. Let G⋆ = (Q̄⋆, π̄⋆, 0) ∈ G0. Consider arbitrary G ∈ G0 and policy π. Let M̃ and

M̃⋆ be the absorbing MDPs induced by G and G⋆, respectively, and let d̃π and d̃⋆,π be their

respective state-action distributions. Then,

SuppS×A(d̃
π) ⊆ SuppS×A(d̃

⋆,π),

where SuppS×A(d) denotes the support of a distribution d when restricted on S ×A.

Proof. Let τ = (s0, a0, s1, a1, . . .) be any trajectory that has non-zero probabilty in the

trajectory distribution ρ̃π of π on M̃. Let I and I⋆ be the intervention sets of G and G⋆,

respectively. Suppose for some t that (st, at) ∈ I. We know for t′ ≥ t+ 1 that st′ = s†. In

addition, by Lemma 6, we have Ā⋆(st′ , at′) ≤ Ā(st′ , at′) ≤ 0 for any t′ ∈ {0, . . . , t − 1},

so (st′ , at′) /∈ I⋆. Therefore, the sub-trajectory (st′ , at′) with t′ ∈ {0, . . . , t} also has a

non-zero probability in M̃⋆. By this argument, every sub-trajectory in S × A with non-

zero probability in M̃ also has non-zero probability in M̃⋆. The final thesis follows from

defining the state-action distributions through averaging the trajectory distributions.

B.1.4 Proof for Absorbing MDP in Section 3.3.3

We derive some properties of the Bellman operator of the absorbing MDP.

Lemma 7. For a policy π, let (BπQ)(s, a) ≜ r(s, a) + γ Ep(s′|s,a)[Q(s′, π)] denote the

Bellman operator of π in M; similarly define B̃π for M̃. Let Q : S̃ × A → R be some

function satisfying Q(s†, a) = 0 for all a ∈ A.

136

1. The Bellman operator in M̃ can be written as

(B̃πQ)(s, a) =

(BπQ)(s, a) · 1{(s, a) /∈ I} − c† · 1{(s, a) ∈ I}, (s, a) ∈ S ×A

0, s = s†.

(B.3)

2. The following holds when the temporal-difference operator D̃π for M̃ is applied to

the policy’s state-action value function Qπ for M:

(
−c† −

1

1− γ

)
1{(s, a) ∈ I} ≤ (D̃πQπ)(s, a) ≤ −c† 1{(s, a) ∈ I} for all (s, a) ∈ S ×A

(B.4)

(D̃πQπ)(s†, a) = 0, (B.5)

where the definition of Qπ is extended to s† as Qπ(s†, a) = 0.

Proof. For brevity, let Ω(s, a) = 1{(s, a) ∈ I}.

1. Since Q(s†, π) = 0, the following holds for any (s, a) ∈ S ×A:

(B̃πQ)(s, a) = r̃(s, a) + γ Ep(s′|s,a)[Q(s′, π)]

= (1− Ω(s, a))
(
r(s, a) + γ Ep(s′|s,a)[Q(s′, π)]

)
− Ω(s, a) · c†

= (1− Ω(s, a)) · (BπQ)(s, a)− Ω(s, a) · c†

and

(B̃πQ)(s†, a) = 0 + γQ(s†, π) = 0.

2. For Eq. (B.4), using the fact that BπQπ = Qπ, the following applies on S ×A:

(D̃πQπ)(s, a) = (B̃πQπ)(s, a)−Qπ(s, a) = Ω(s, a) · (−c† −Qπ(s, a)).

137

Since 0 ≤ Qπ(s, a) ≤ 1
1−γ , we have

(
−c† −

1

1− γ

)
Ω(s, a) ≤ (D̃πQπ)(s, a) ≤ −c†Ω(s, a).

For the absorbing state in Eq. (B.5), by the extended definition and the equality

(B̃πQ)(s†, a) = 0, we have

(D̃πQπ)(s†, a) = (B̃πQπ)(s†, a)−Qπ(s†, a) = 0.

Lemma 8. For any policy π, PG(π) =
1

1−γ Ed̃π(s,a)[1{(s, a) ∈ I}] .

Proof. Notice that for any h,

Pρπ(τ)(τh ∩ I ≠ ∅) = Pρ̃π(τ)(τh ∩ I ≠ ∅)

= Eρ̃π(τ)

[
h−1∑
t=0

1{(st, at) ∈ I}
]
.

By Lemma 2,

1

1− γ
Ed̃π(s,a)[1{(s, a) ∈ I}] = Eρ̃π(τ)

[∞∑
t=0

γt 1{(st, at) ∈ I}
]

= (1− γ)
∞∑
h=0

γh Eρ̃π(τ)

[
h−1∑
t=0

1{(st, at) ∈ I}
]

= (1− γ)
∞∑
h=0

γh Pρπ(τ)(τh ∩ I ≠ ∅)

= PG(π).

138

Using the above results, we can bound the difference between the values of the original

and the absorbing MDPs.

Lemma 1. For every policy π, it holds that

c†PG(π) ≤ V π(d0)− Ṽ π(d0) ≤
(
c† +

1

1− γ

)
PG(π).

Proof. First, extend the definition of Qπ to s† as Qπ(s†, a) = 0 for any a ∈ A. From

Corollary 1, we have

Ṽ π(d0)− V π(d0) =
1

1− γ
Ed̃π(s,a)[(D̃πQπ)(s, a)]

From Lemma 7, we can derive

(
−c† −

1

1− γ

)Ed̃π(s,a)[1{(s, a) ∈ I}]
1− γ

≤ Ṽ π(d0)−V π(d0) ≤ −c†
Ed̃π(s,a)[1{(s, a) ∈ I}]

1− γ
.

Finally, substituting the equality from Lemma 8 and negating the inequality concludes the

proof.

Next, we derive some lemmas, which will be later to used to show that when the inter-

vention set is partial, the unconstrained reduction is effective.

Lemma 9. Let I ⊂ Ssafe × A be partial, and let F = (Ssafe × A) \ I be the state-action

pairs that are not intervened. For an arbitrary policy π, define

πf (a|s) ≜ π(a|s)1{(s, a) ∈ F}+ f(s, a), (B.6)

where f(s, a) is some arbitrary non-negative function which is zero on I and that ensures

139

∑
a∈A πf (a|s) = 1 for all s ∈ S. Define

J̃π+ ≜
1

1− γ
Ed̃π(s,a)[r(s, a) · 1{(s, a) ∈ F}]

J̃π− ≜
1

1− γ
Ed̃π(s,a)[−c† · 1{(s, a) ∈ I}]

as the expected returns in F and I, respectively.

The following are true:

1. Ṽ π(d0) = J̃π+ + J̃π−.

2. d̃πf (s, a) ≥ d̃π(s, a) for all (s, a) ∈ F .

3. J̃πf+ ≥ J̃π+.

4. Ed̃πf (s,a)[1{(s, a) ∈ I}] = 0, implying J̃πf− = 0.

5. Ṽ πf (d0) ≥ Ṽ π(d0) whenever c† ≥ 0. Furthermore, if c† > 0 and π(a|s) > 0 for

some (s, a) ∈ I, then Ṽ πf (d0) > Ṽ π(d0).

Proof. 1. This follows from the definition of r̃ in Eq. (7.7).

2. Recall d̃π(s, a) = (1 − γ)
∑∞

t=0 γ
td̃πt (s, a). To show the desired result, we show

by induction that d̃πft (s, a) ≥ d̃πt (s, a) for all (s, a) ∈ F and t ≥ 0. For t = 0,

by construction of πf , we have πf (a|s) ≥ π(a|s) for all (s, a) ∈ F and therefore

d̃
πf
0 (s, a) ≥ d̃π0 (s, a) for all (s, a) ∈ F .

Now suppose that for some t ≥ 0 the inequality d̃πft (s, a) ≥ d̃πt (s, a) holds for all

140

(s, a) ∈ F . Then, for some (s, a) ∈ F , we can derive

d̃
πf
t+1(s, a) = πf (a|s)

∑
(st,at)∈S×A

p̃(s|st, at)d̃πft (st, at)

= πf (a|s)
∑

(st,at)∈F
p(s|st, at)d̃πft (st, at)

≥ π(a|s)
∑

(st,at)∈F
p(s|st, at)d̃πt (st, at)

= d̃πt+1(s, a),

where we use the inductive hypothesis in the inequality. Thus, we have d̃πf (s, a) ≥

d̃π(s, a) by summing over each time step.

3. From statement 2, definition of J̃π+, and non-negativity of the reward r, it follows that

J̃
πf
+ ≥ J̃π+.

4. This statement from the construction of πf and induction. First, we have d̃πf0 (s, a) =

0 for all (s, a) ∈ I. Now suppose for some t ≥ 0 that d̃πft (s, a) = 0 for all (s, a) ∈ I.

We can see that d̃πft+1(s, a) = 0 for all (s, a) ∈ I since πf never chooses actions such

that (s, a) ∈ I.

Therefore, d̃πf (s, a) = 0 for all (s, a) ∈ I. By definition of J̃π−, this allows us to

conclude that J̃π− = 0.

5. Using statements 3 and 4, we conclude that

Ṽ πf (d0) = J̃
πf
+ + J̃

πf
− ≥ J̃π+ + J̃π− = Ṽ π(d0).

The special case follows from observing that J̃π− < 0 whenever π(a|s) > 0 for some

(s, a) ∈ I.

141

Lemma 10. Let c† be non-negative and Ṽ ⋆ denote the optimal value function for M̃.

1. For any policy π,

Ṽ ⋆(d0) ≥ J̃π+.

2. There is an optimal policy π̃⋆ of M̃ satisfying

Ed̃π̃⋆ (s,a)[1{(s, a) ∈ I}] = 0. (B.7)

3. If c† is positive, every optimal policy of M̃ satisfies Eq. (B.7).

Proof. 1. Let the policy π be arbitrary, and define πf using Eq. (B.6). The following

then holds by Lemma 9:

Ṽ ⋆(d0) ≥ Ṽ πf (d0) = J̃
πf
+ ≥ J̃π+.

2. Suppose that π is an optimal policy of M̃, and define πf using Eq. (B.6). Because c†

is non-negative, we know by Lemma 9 and optimality of π that Ṽ πf (d0) = Ṽ π(d0).

Therefore, we can define an optimal policy as π̃⋆ = πf and conclude by Lemma 9

that Ed̃π̃⋆ (s,a)[1{(s, a) ∈ I}] = 0.

3. Suppose for the sake of contradiction there is an optimal policy π̃⋆ of M̃ such that

Eq. (B.7) does not hold (i.e., it may take some (s, a) ∈ I). By Lemma 9, we can

construct some policy πf such that Ṽ πf (d0) > Ṽ π̃⋆
(d0). This contradicts π̃⋆ being

optimal, so every optimal policy of M̃ must satisfy Eq. (B.7).

These results show that if the intervention set is partial and the penalty of being inter-

vened is strict, then the optimal policy of the absorbing MDP would not be intervened.

Proposition 6. If c† is positive and G induces a partial I, then every optimal policy π̃⋆ of

M̃ satisfies PG(π̃⋆) = 0.

142

Proof. This directly follows from Lemmas 8 and 10.

Below we derive some lemmas to show a near optimal policy of the absorbing MDP is

safe. (We already proved above that the optimal policy of the absorbing MDP is safe).

Lemma 11. Let I ⊂ S × A be partial (Definition 2). Given some policy π, let π′ be the

corresponding shielded policy defined in Eq. (7.4). Then, the following holds for any h ≥ 0

in M:

Pρπ(τ)(s▷ ∈ τh) ≤ Pρπ′ (τ)(s▷ ∈ τh) + Pρπ(τ)(τh ∩ I ≠ ∅), (B.8)

where τh = (s0, a0, . . . , sh−1, ah−1) is an h-step trajectory segment.

Proof. First, we notice that π′(a|s) ≥ π(a|s) when (s, a) /∈ I, because π′(a|s) = π(a|s) +

w(s)µ(a|s) ≥ π(a|s).

We bound the probability of π violating a constraint in M by introducing whether π

visits the intervention set:

Pρπ(τ)(s▷ ∈ τh) = Pρπ(τ)(s▷ ∈ τh, τh ∩ I = ∅) + Pρπ(τ)(s▷ ∈ τh, τh ∩ I ≠ ∅)

≤ Pρπ(τ)(s▷ ∈ τh, τh ∩ I = ∅) + Pρπ(τ)(τh ∩ I ≠ ∅).

We now bound the first term. Let τh satisfy the event “s▷ ∈ τh, τh ∩ I = ∅”, and let

T be the time index such that sT = s▷ in τh. Then, the probability of this trajectory under

π and M is

d0(s0)π(a0|s0)p(s1|s0, a0) · · · π(aT−1|sT−1)p(sT |sT−1, aT−1).

Since each (st, at) is not in I, we have π(at|st) ≤ π′(at|st) for each (st, at) in τh. Thus,

the probability of this trajectory under π and M is upper bounded by its probability under

π′ and M. Summing over each trajectory τh satisfying the event then yields:

Pρπ(τ)(s▷ ∈ τh, τh ∩ I = ∅) ≤ Pρπ′ (τ)(s▷ ∈ τh, τh ∩ I = ∅).

143

We now complete the original bound:

Pρπ(τ)(s▷ ∈ τh) ≤ Pρπ(τ)(s▷ ∈ τh, τh ∩ I = ∅) + Pρπ(τ)(τh ∩ I ≠ ∅)

≤ Pρπ′ (τ)(s▷ ∈ τh, τh ∩ I = ∅) + Pρπ(τ)(τh ∩ I ≠ ∅)

≤ Pρπ′ (τ)(s▷ ∈ τh) + Pρπ(τ)(τh ∩ I ≠ ∅).

Lemma 12. For any policy π and I ⊂ S × A that is partial, let π′ be the corresponding

shielded policy. Then, the following safety bound holds:

V̄ π(d0) ≤ V̄ π′
(d0) +

1

1− γ
Ed̃π(s,a)[1{(s, a) ∈ I}].

Proof. Using Eq. (B.8) from Lemma 11 and the fact that the probabilities can be expressed

as expected sums of indicators:

Pρπ(τ)(s▷ ∈ τh) = Eρπ(τ)

[
h−1∑
t=0

1{st = s▷}
]

Pρπ′ (τ)(s▷ ∈ τh) = Eρπ′ (τ)

[
h−1∑
t=0

1{st = s▷}
]

Pρπ(τ)(τh ∩ I ≠ ∅) = Eρ̃π(τ)

[
h−1∑
t=0

1{(st, at) ∈ I}
]
.

Then, applying Lemma 2 results in the desired inequality.

Proposition 7 (Suboptimality in M̃ to Suboptimality and Safety in M). Let c† be positive.

For some policy π, let π′ be the shielded policy defined in Eq. (7.4). Suppose π is ε-

suboptimal for M̃. Then, for any comparator policy π⋆, the following performance and

144

safety guarantees hold for π in M:

V π⋆

(d0)− V π(d0) ≤
(
c† +

1

1− γ

)
PG(π

⋆) + ε

V̄ π(d0) ≤ V̄ π′
(d0) +

ε

c†
.

Proof. The performance bound follows from Lemma 1.

V π⋆

(d0)− V π(d0) = V π⋆

(d0)− Ṽ π⋆

(d0) + Ṽ π⋆

(d0)− Ṽ π(d0) + Ṽ π(d0)− V π(d0)

≤
(
c† +

1

1− γ

)
PG(π

⋆) + Ṽ π⋆

(d0)− Ṽ π(d0)− c† PG(π)

≤
(
c† +

1

1− γ

)
PG(π

⋆) + Ṽ ∗(d0)− Ṽ π(d0)

≤
(
c† +

1

1− γ

)
PG(π

⋆) + ε.

For the safety bound, we start with Lemma 12:

V̄ π(d0) ≤ V̄ π′
(d0) +

1

1− γ
Ed̃π(s,a)[1{(s, a) ∈ I}]

We provide an upper bound on the second term on the right hand side above. Using the

definition of J̃π− in Lemma 9, we derive that

Ed̃π(s,a)[1{(s, a) ∈ I}]
1− γ

= − J̃
π
−
c†

=
1

c†

(
−Ṽ π(d0) + Ṽ ⋆(d0) + J̃π+ − Ṽ ⋆(d0)

)
≤ 1

c†

(
Ṽ ⋆(d0)− Ṽ π(d0)

)
=

ε

c†
,

where the inequality is due to Lemma 10.

145

Combine everything altogether:

V̄ π(d0) ≤ V̄ π′
(d0) +

Ed̃π(s,a)[1{(s, a) ∈ I}]
1− γ

= V̄ π′
(d0) +

ε

c†
.

We now prove the main result of the chapter.

Theorem 1 (Performance and Safety Guarantee at Deployment). Let c† = 1 and G be σ-

admissible. If π̂ is an ε-suboptimal policy for M̃, then, for any comparator policy π⋆, the

following performance and safety guarantees hold for π̂ in M:

V π⋆

(d0)− V π̂(d0) ≤
2

1− γ
PG(π

⋆) + ε

V̄ π̂(d0) ≤ Q̄(d0, µ) +
min{σ + η, 2γ}

1− γ
+ ε,

where PG(π⋆) ≜ (1− γ)
∑∞

h=0 γ
h Pρπ⋆

(τ)(τ
h ∩I ̸= ∅) is the probability that π⋆ visits I in

M.

Proof. This is a direct result of Proposition 7.

The performance suboptimality results from:

V π⋆

(d0)− V π̂(d0) ≤
(
c† +

1

1− γ

)
PG(π

⋆) + ε

≤
(
1 +

1

1− γ

)
PG(π

⋆) + ε

=
2− γ

1− γ
PG(π

⋆) + ε

≤ 2

1− γ
PG(π

⋆) + ε.

146

For the safety bound,

V̄ π̂(d0) ≤ V̄ G(π̂)(d0) + ε

≤ Q̄(d0, µ) +
min{σ + η, 2γ}

1− γ
+ ε,

where the second inequality follows from Theorem 2 and ε-suboptimality of π̂ in M̃.

B.2 Additional Discussion of SAILR

B.2.1 Necessity of the Partial Property

1 2

3

s▷ s◦

M

1

0

0

0

0

0

1 2

3

s▷ s◦

s† M̃′

1

0

0

0

0

−c†

0

Figure B.1: A simple example illustrating a non-partial intervention. Edge weights corre-
spond to rewards. If c† < 1/γ, the optimal policy in M̃′ will always go into the intervention
set.

We highlight that the subset I being partial (Definition 1) is crucial for the uncon-

strained MDP reduction behind SAILR. If we were to construct an absorbing MDP M̃′

described in Section 7.3.2 using an arbitrary non-partial subset I ′ ⊆ S ×A, then the opti-

mal policy of M̃′ can still enter I ′ for some c† ≥ 0, because the optimal policy of M̃′ can

use earlier rewards to make up for the penalty incurred in I ′.

To see this, consider the toy MDP M shown in Fig. B.1. Since there is no alternative

action available at state 2, the intervention illustrated in M̃′ is not partial. Suppose c† <

1/γ. Then, in M̃′, a policy choosing to transition from 1 to 3 has a value of 0, and a policy

choosing to transition from 1 to 2 has a value of 1− γc† > 0. Therefore, the optimal policy

147

will transition from 1 to 2 and go into the non-partial intervention set I ′. Once applied to

the original MDP M, this policy will always go into the unsafe set.

One might think that generally it is possible to set c† to be large enough to ensure the

optimal policy will never go into the intervention set, which is indeed true for the coun-

terexample above. But we remark that we need to set c† to be arbitrarily large for general

problems, which can cause high variance issues in return or gradient estimation (Shalev-

Shwartz et al., 2016). Because of the discount factor γ < 1, the reward stemming from the

absorbing state will be at most −γT c†, where T is the time step that the system enters I ′.

For a fixed and finite c†, we can then extend the above MDP construction to let the agent

go through a long enough chain after transitioning from 1 to 2 so that the resultant value

satisfies 1 − γT c† > 0. Like the example above, this path would be the only path with

positive reward, despite intersecting the intervention set. Therefore, the optimal policy of

M̃′ will enter I ′.

B.2.2 Bias of SAILR

In Theorem 1, we give a performance guarantee of SAILR

V ⋆(d0)− V π̂(d0) ≤
2

1− γ
PG(π

⋆) + ε.

It shows that SAILR has a bias PG(π⋆) ∈ [0, 1], which is the probability that the optimal

policy π⋆ would be intervened by the advantage-based intervention rule. Here we discuss

special cases where this bias vanishes.

The first special case is when the original problem is unconstrained (i.e., Eq. (7.2) has

a trivial constraint with δ = 1). In this case, we can set the threshold η ≥ γ in SAILR to

turn off the intervention, and SAILR returns the optimal policy of the MDP M when the

base RL algorithm can find one.

Another case is when π⋆ is a perfect safe policy, i.e., V̄ π⋆
(d0) = 0 and we run SAILR

148

with the intervention rule G⋆ = (Q̄⋆, π̄⋆, 0) (Proposition 4). Similar to the proof of Lemma 6,

one can show that running π⋆ would not trigger the intervention rule G⋆ and therefore the

bias PG⋆(π⋆) is zero.

However, we note that generally the bias PG(π⋆) can be non-zero.

B.3 Experimental Details

B.3.1 Point Robot

Figure B.2: The point environment. The black dot corresponds to the agent, the green
circle to the desired path, and the red lines to the constraints on the horizontal position.
The vertical constraints are outside of the visualized environment.

This environment (Fig. B.2) is a simplification of the point environment proposed

by Achiam et al. (2017). The state is s = (x, y, ẋ, ẏ), where (x, y) is the x-y position

and (ẋ, ẏ) is the corresponding velocity. The action a = (ax, ay) is the force applied to the

robot (each component has maximum magnitude amax). The agent has some mass m and

can achieve maximum speed vmax. The dynamics update (with time increment ∆t) is:

(xt+1, yt+1) = (xt, yt) + (ẋt, ẏt)∆t+
1

2m
at∆t

2

(ẋt+1, ẏt+1) = clip-norm

(
(ẋt, ẏt) +

1

m
at∆t, vmax

)
,

where clip-norm(u, c) scales u so that its norm matches c if ∥u∥ > c. The reward corre-

sponds to following a circular path of radius R⋆ at a high speed and the safe set to staying

149

within desired positional bounds xmax and ymax:

r(s, a) =
(ẋ, ẏ) · (−y, x)

1 + |∥(x, y)∥ −R⋆|

Ssafe = {s ∈ S : |x| ≤ xmax and |y| ≤ ymax}

For our experiments, we set these parameters to m = 1, vmax = 2, amax = 1, ∆t = 0.1,

R⋆ = 5, xmax = 2.5, and ymax = 15.

For this environment, we also consider a shaped cost function ĉ(s, a) which is a function

of the distance of the state s to the boundary of the unsafe set, denoted by dist(s,Sunsafe).

Here, Sunsafe denotes the 2D unsafe region in this environment (i.e., those outside the verti-

cal lines in Fig. B.2). Note that in the theoretical analysis Sunsafe is abstracted into {s▷, s†}.

For the point environment, the distance function is dist(s, Sunsafe) = max{0,min{xmax−

x, xmax + x, ymax − y, ymax + y}}. For some constant α ≥ 0, the cost function is defined

as a hinge function of the distance:

ĉ(s, a) =

1{dist(s,Sunsafe) = 0}, α = 0

max
{
0, 1− 1

α
dist(s,Sunsafe)

}
, otherwise.

(B.9)

We note that ĉ is an upper bound for c if α > 0 and ĉ = c if α = 0. We shape the cost

here to make it continuous, so that the effects of approximation bias is smaller than that

resulting from a discontinuous cost (i.e., the original indicator function).

Intervention Rule: The backup policy µ applies a decelerating force (with component-

wise magnitude up to amax) until the agent has zero velocity. Our experiments consider the

following approaches to construct Q̄:

• Neural network approximation: We construct a dataset of points mapping states

and actions to state-action values Q̄µ by picking some state and action in the MDP,

executing the action from that state, and then continuing the rollout with the backup

150

policy µ to find the empirical state-action value with respect to the shaped cost func-

tion ĉ. Our dataset consists of 107 points resulting from a uniform discretization of

the state-action space. We apply a similar method to form a dataset for the state

values V̄ µ.

We then train four networks (two to independently approximate Q̄µ, and two for

V̄ µ), where each network has three hidden layers each with 256 neurons and a

ReLU activation. The predicted advantage is Ā(s, a) = max{Q̄1(s, a), Q̄2(s, a)} −

min{V̄1(s), V̄2(s)}, where we apply the pessimistic approach from Thananjeyan et

al. (2021) to prevent overestimation bias.

• Model-based evaluation: Here, we have access to a model of the robot where all

parameters match the real environment except possibly the mass m̂. We refer to the

modeled transition dynamics as p̂ and the resulting trajectory distribution under µ as

ρ̂µ. The function Q̄ is then set to be the model-based estimate of Q̄µ using the shaped

cost function ĉ and dynamics p̂:

Q̄(s, a) = Eρ̂µ(τ |s0=s,a0=a)

[∞∑
t=0

γtĉ(st, at)

]
.

For our experiments, the modeled mass m̂ is either 1 (unbiased case) or 0.5 (biased

case).

For our experiments, we set the advantage threshold η = 0.08 when using the neural net-

work approximator and η = 0 when using the model-based rollouts.

Hyperparameters: All point experiments were run on a 32-core Threadripper ma-

chine. The given hyperparameters were found by hand-tuning until good performance was

found on all algorithms.

151

Hyperparameter Value
Epochs 500
Neural network architecture 2 hidden layers, 64 neurons per hidden layer, tanh act.
Batch size 4000
Discount γ 0.99
Entropy bonus 0.001
CMDP threshold δ 0.01
Penalty value c† 2
Lagrange multiplier step size (for constrained approaches) 0.05
Cost shaping constant α 0.5
Number of seeds 10

Figure B.3: The half-cheetah environment. The green circle is centered on the link of
interest, and the white double-headed arrow denotes the allowed height range of the link.

B.3.2 Half-Cheetah

This environment (Fig. B.3) comes from OpenAI Gym and has reward equal to the agent’s

forward velocity. One of the agent’s links (denoted by the green circle in Fig. B.3) is

constrained to lie in a given height range, outside of which the robot is deemed to have

fallen over. In other words, if h is the height of the link of interest, hmin is the minimum

height, and hmax is the maximum height, the safe set is defined as Ssafe = {s ∈ S : hmin ≤

h ≤ hmax}. For our experiments, we set hmin = 0.4 and hmax = 1.

Heuristic Intervention Rule: This intervention rule G = (Q̄, µ, η) relies on a dy-

namics model (here, unbiased) to greedily predict whether the safety constraint would be

violated at the next time step. In particular, if s is the current state and â ∼ π(·|s) is the

proposed action, the agent will be intervened if the height ĥ′ in the next state ŝ′ ∼ p(·|s, â)

lies outside the range [ĥmin, ĥmax], where ĥmin and ĥmax can be set to a smaller range than

152

[hmin, hmax] to induce a more conservative intervention. Once intervened, the episode ter-

minates. The reason for using a smaller range [ĥmin, ĥmax] is an attempt to make the inter-

vention rule possess the partial property (see the discussion in Section 7.3.1). If we were to

set the range to be the ordinary range [hmin, hmax] that defines the safe subset, the penalty

c† would need to be very negative, which would destabilize learning. Furthermore, there is

no guarantee that the intervention set for the original range is partial since there may be no

available action to keep the agent from being intervened.

MPC-Based Intervention Rule: Similarly with the model-based intervention rule for

the point environment, the MPC intervention rule G = (Q̄, µ, η) uses a model of the half-

cheetah. The backup policy µ is a sampling-based model predictive control (MPC) algo-

rithm based on (Williams, Wagener, et al., 2017). The MPC algorithm has an optimization

horizon of H = 16 time steps and minimizes the cost function corresponding to an indica-

tor function of the link height being in the range [0.45, 0.95].1 The function Q̄ is defined

as:

Q̄(s, a) = Eρ̂(τ)

[
H∑
t=0

γtĉ(ŝt, ât)

∣∣∣∣∣ ŝ0 = s, â0 = a, â1:H = MPC(ŝ1)

]
,

where ĉ(s, a) is the hinge-shaped cost function (in Eq. (B.9)) corresponding to the distance

function dist(s, Sunsafe) = max{0,min{h− hmin, hmax − h}}.

For our experiments, we set the advantage threshold η = 0.2. We also use a modeled

mass of 14 (unbiased) and 12 (biased) in our experiments.

Hyperparameters: Except for the MPC-based intervention, all half-cheetah experi-

ments were run on a 32-core Threadripper machine. The MPC-based intervention ex-

periments were run on 64-core Azure servers with each run taking 24 hours. The given

hyperparameters were found by hand-tuning until good performance was found on all al-

gorithms.

1Observe that this is slightly smaller than the [0.4, 1] height range of the original safety constraint.

153

Hyperparameter Value
Epochs 1250
Neural network architecture 2 hidden layers, 64 neurons per hidden layer, tanh act.
Batch size 4000
Discount γ 0.99
Entropy bonus 0.01
CMDP threshold δ 0.01
Penalty value c† 0.1
Lagrange multiplier step size (for constrained approaches) 0.05
Heuristic intervention range [ĥmin, ĥmax] [0.4, 0.9]
Cost shaping constant α 0.05
Number of seeds 8

B.4 Ablations for Point Robot

We run the following two ablations for the point environment, with results shown in Fig. B.4:

1. We additionally run all the algorithms with the original sparse cost (Fig. B.4a). Here,

the baseline algorithms as expected yield high deployment returns while violating

many constraints during training. For SAILR, however, only the model-based in-

stance with an unbiased model is able to satisfy the desiderata of high deployment

returns while being safe during training. In this case, the sparse cost along with the

approximation errors from the other two instances result in the slack σ being large

for admissibilty, meaning the safety bounds in Theorems 1 and 2 are loose.

2. We run the model-based instance of SAILR with a biased model and either the sparse

cost or the shaped cost (Fig. B.4b). Using the sparse cost with the biased model

for intervention has deleterious effects in safety and performance. The model mis-

match causes a compounding number of safety violations in training (bottom plot)

and destabilizes the policy optimization, as observed in the deteriorated returns (top

plot) and safety (middle plot), respectively. Shaping the cost function for intervention

results in far fewer safety violations and stabilizes the policy optimization.

154

Episode return without interventions

Episode length without interventions

Total number of safety violations during training

(a) Sparse cost
(b) Biased model, either a sparse

cost or shaped cost

Figure B.4: Ablations for point robot experiment

B.5 Varying Intervention Penalty for Half-Cheetah

We vary the intervention penalty c† for both the MPC-based intervention and heuristic in-

tervention (Fig. B.5). Common among all results is that the deployment episode return (top

row) decreases and deployment safety (middle row) increases with the magnitude of the

penalty, consistent with the performance and safety bounds in Proposition 7. Furthermore,

early in training, we remark that larger penalties result in the agent learning to be safe more

quickly (middle row). This is likely because the large penalties prioritize the agent to not

155

Episode return without interventions

Episode length without interventions

Total number of safety violations during training

(a) MPC with unbiased
model

(b) MPC with biased
model

(c) Heuristic with
smaller height range

(d) Heuristic with
original height range

Figure B.5: Varying intervention penalty for half-cheetah experiment. Here, c† = −R̃.

be intervened, which allows it to more quickly learn to be as safe as the backup policy µ.

For training-time safety with the MPC backup policy (bottom row of Figs. B.5a and B.5b),

we observe that there are more violations as the penalty decreases, likely because the agent

is less conservative during rollouts.

For the heuristic intervention (Figs. B.5c and B.5d), we surmise that neither heuristic

is partial since we require c† to be relatively large in order for the agent to learn to be

safe (middle row). This is in constrast with the MPC-based intervention rule (middle row

of Figs. B.5a and B.5b), where the penalty only needs to be nonzero, which indicates that

the MPC-based intervention is partial.

156

APPENDIX C

MoCapAct: A MULTI-TASK DATASET FOR SIMULATED HUMANOID

CONTROL

This appendix provides the following sections:

• Documentation of the dataset (Section C.1)

• Training details (Section C.2)

• Extra results (Section C.3)

C.1 Dataset Documentation

C.1.1 Clip Snippet Experts

We signify a clip snippet expert by the snippet it is tracking. We denote a snippet by the

clip ID, its start step, and its end step. For example, CMU_006_12-151-336 is the snip-

pet corresponding to the clip CMU_006_12 with start step 151 and end step 336. Taking

CMU_006_12-151-336 as an example expert, the file hierarchy for the snippet expert is:

CMU_006_12-151-336

clip_info.json......................Contains clip ID, start step, and end step.

eval_rsi/model

best_model.zipContains policy parameters and hyperparameters.

vecnormalize.pkl........Used to get normalizer for observation and reward.

The expert policy can be loaded using Stable-Baselines3’s functionality.

157

C.1.2 Expert Rollouts

The expert rollouts consist of a collection of HDF5 files, one file per clip. An HDF5 file

contains expert rollouts for each constituent snippet as well as miscellaneous information

and statistics. To facilitate efficient loading of the observations, we concatenate all the

proprioceptive observations (joint angles, joint velocities, actuator activations, etc.) from

an episode into a single numerical array and provide indices for the constituent observations

in the observable_indices group.

Taking CMU_009_12.hdf5 (which contains three snippets) as an example, we have the

following HDF5 hierarchy:

CMU_009_12.hdf5

n_rsi_rolloutsR, number of rollouts from random time steps in snippet.

n_start_rollouts..................S, number of rollouts from start of snippet.

ref_steps . Indices of MoCap reference relative to current time step. Here, (1, 2, 3, 4, 5).

observable_indices

walker

actuator_activation................................ (0, 1, . . . , 54, 55)

appendages_pos....................................(56, 57, . . . , 69, 70)

body_height...(71)

...

world_zaxis..(2865, 2866, 2867)

stats...............................Statistics computed over the entire dataset.

act_mean.............................Mean of the experts’ sampled actions.

act_var...........................Variance of the experts’ sampled actions.

mean_act_mean..........................Mean of the experts’ mean actions.

158

mean_act_var........................Variance of the experts’ mean actions.

proprio_meanMean of the proprioceptive observations.

proprio_var....................Variance of the proprioceptive observations.

countNumber of observations in dataset.

CMU_009_12-0-198 Rollouts for the snippet CMU_009_12-0-198.

CMU_009_12-165-363............Rollouts for the snippet CMU_009_12-165-363.

CMU_009_12-330-529............Rollouts for the snippet CMU_009_12-330-529.

Each snippet group containsR+S rollouts. The first S episodes correspond to episodes

intialized from the start of the snippet and the last R episodes to episodes initialized at ran-

dom points in the snippet. We now uncollapse the CMU_009_12-0-198 group within the

HDF5 file to reveal the rollout structure:

CMU_009_12-0-198

early_termination (R+ S)-boolean array indicating which episodes terminated early.

rsi_metrics......Metrics for episodes that initialize at random points in snippet.

episode_returns...............................R-array of episode returns.

episode_lengthsR-array of episode lengths.

norm_episode_returnsR-array of normalized episode rewards.

norm_episode_lengths..............R-array of normalized episode lengths.

start_metrics.............Metrics for episodes that initialize at start in snippet.

0...First episode, of length T .

observations

proprioceptive............(T + 1)-array of proprioceptive observations.

159

walker/body_camera (T + 1)-array of images from body camera (not included).

walker/egocentric_camera...(T + 1)-array of images from egocentric camera (not included).

actions................T -array of sampled actions executed in environment.

mean_actions.......................T -array of corresponding mean actions.

rewards..............................T -array of rewards from environment.

valuesT -array computed using the policy’s value network.

advantages T -array computed using generalized advantage estimation.

1 ... Second episode.
...

R + S − 1.. (R + S)th episode.

To keep the dataset size manageable, we do not include image observations in the

dataset. We do provide code to log them when rolling out the experts for generating the

dataset.

C.1.3 Hosting Plan

The link to the dataset can be found on the project website (microsoft.github.io/MoCapAct).

We provide a “large” rollout dataset where R = S = 100 with size 600 GB and a “small”

rollout dataset where R = S = 10 with size 50 GB. The dataset website also includes the

policies we trained in Section 8.5, i.e., the multi-clip tracking policies, RL-trained task poli-

cies, and the GPT policy. We also provide a Python script to download individual experts

and rollouts from the dataset.

160

https://microsoft.github.io/MoCapAct

C.2 Training Details

C.2.1 Clip Snippet Experts

MoCap Snippets

0 2000 4000 6000

Clip length (time steps)

0

100

200

300

N
um

be
ro

fc
lip

s

(a) Lengths of the MoCap clips.

50 100 150 200

Snippet length (time steps)

0

100

200

300

N
um

be
ro

fs
ni

pp
et

s
(b) Lengths of the snippets generated from
the clips.

Figure C.1: Lengths of clips and snippets.

The MoCap dataset has a wide spread in clip length (Fig. C.1a), with the longest clip

being 6371 time steps (191 seconds). Training clip experts to track long clips is potentially

slow and laborious, so we follow Merel, Hasenclever, et al. (2019) by dividing clips longer

than 210 time steps (6.3 seconds) into short snippets. In particular, we divide the clip into

uniformly-sized snippets with an overlap of 33 time steps (1 second) such that the longest

snippet has at most 210 time steps. This yields a snippet dataset with a much tighter range

of snippet lengths (Fig. C.1b). We do not divide the clips from the “Get Up” subset of the

MoCap dataset since they contain involved motions of getting up from the ground.

Expert Training Details

We use the Stable-Baselines3 (Raffin et al., 2021) implementation of PPO (Schulman, Wol-

ski, et al., 2017) to optimize each expert. Each expert is a neural network with three hidden

layers, 1024 neurons in each hidden layer, and the tanh activation. At the start of each

161

Table C.1: Hyperparameters for clip snippet expert training.

Total environment steps 150 million
Environment steps per policy update 8192

PPO epochs 10
PPO minibatch size 512

PPO clipping parameter ε 0.25
GAE parameter λ 0.95
Discount factor γ 0.95

Gradient norm clipping value 1

Adam step size

1e−5 for first 50M env. steps
6e−6 for next 50M env. steps
3e−6 for last 50M env. steps

episode, we randomly select a time step from the corresponding clip snippet (excluding the

last 10 time steps from the snippet) and initialize the humanoid to match the clip features

at the corresponding step. We evaluate the policy every 1 million environment steps using

1000 episodes under the same initialization scheme (but now excluding the last 30 time

steps of the snippet) and the same action noise of 0.1 as for training rollouts. We also end

the training if the average normalized episode length is at least 0.98 and the average nor-

malized episode reward does not improve by more than 1% from the current best reward

after 10 million environment steps. We normalize the observation and reward using running

statistics from the environment. We give the other relevant hyperparameters in Table C.1.

For details of the reward function and early termination of an episode, we refer the reader

to the appendix of Hasenclever et al. (2020).

We ran the training on a mix of Azure Standard_H8 (8 CPUs), Standard_H16 (16

CPUs), Standard_NC6s_v2 (6 CPUs and 1 P100 GPU), and Standard_ND6s (6 CPUs and

1 P40 GPU) VMs.

The observables for the clip expert are: joints_pos, joints_vel, sensors_velocimeter,

sensors_gyro, end_effectors_pos, world_zaxis, actuator_activation, sensors_touch,

sensors_torque, time_in_clip.

162

C.2.2 Multi-Clip Tracking Policy

Table C.2: Hyperparameters for multi-clip tracking policy training.

Adam step size 5e−4
Minibatch sequence length T 30

Minibatch size 256
Gradient norm clipping value 1

KL divergence weight β 0.1
Autoregressive parameter α 0

Weighting temperature λ

CWR: 0.2
AWR: 8
RWR: 4

We train the multi-clip policy π(at, zt|st, sreft , zt−1) = πenc(zt|st, sreft , zt−1)πdec(at|st, zt)
by optimizing the following imitation objective:

E(s1:T ,sref1:T ,a1:T ,c)∼D,
z0:T∼πenc

[
T∑

t=1

[
wc(st, at) log πdec(at|st, zt)− β KL(πenc(zt|st, sreft , zt−1) ∥ p(zt|zt−1))

]]
,

where p(zt|zt−1) = N (zt;αzt−1, (1 − α2)I) for some α ∈ [0, 1]. We do this (for each

data point in a minibatch) by sampling z0 ∼ N (0, I), sampling a T -step data sequence

(of humanoid states s1:T , MoCap references sref1:T , and expert’s mean actions ā1:T) from

the dataset D, unrolling the recurrent policy through the sampled sequence, performing

backpropagation through time on the objective function, and finally updating the network

using the Adam optimizer (Kingma and Ba, 2015). To speed up training, we normalize the

humanoid state st and MoCap reference sreft using the corresponding mean and standard

deviation computed over the entire dataset. For the weighted schemes, we multiply the

weight wc by a constant that ensures the average data weight is 1 so that the KL regulariza-

tion term maintains the same relative weight. For all schemes, we also sample data from

shorter clips at a higher rate to ensure the rollout data from the clips is uniformly even. This

gives about 1% improvement in policy evaluation compared to vanilla sampling.

We use PyTorch Lightning (Falcon, 2019) to train the multi-clip policy. The encoder

and decoder are both neural networks with 1024 neurons per hidden layer and use layer

norm and the ELU activation. The encoder has two hidden layers, while the decoder has

163

three hidden layers. We ran the training on Azure Standard_ND24s VMs, each equipped

with 24 CPUs and 4 P40 GPUs. We periodically evaluate the multi-clip policy by running

1000 episodes on the set of MoCap snippets following the same reference state initializa-

tion scheme as in the rest of the paper. We found we only need to train the policy for

about 50 000 steps (about 10% of an epoch) before plateauing on policy evaluation (Sec-

tion C.3.2). We give the other relevant hyperparameters in Table C.2.

The observables for the policy are:

• Encoder: joints_pos, joints_vel, sensors_velocimeter, sensors_gyro,

end_effectors_pos, world_zaxis, actuator_activation, sensors_touch,

sensors_torque, body_height, reference_rel_bodies_pos_local,

reference_rel_bodies_quats

• Decoder: joints_pos, joints_vel, sensors_velocimeter, sensors_gyro,

end_effectors_pos, world_zaxis, actuator_activation, sensors_touch,

sensors_torque

C.2.3 Transfer for Reinforcement Learning

Go-to-Target Task

This task matches that of Hasenclever et al. (2020), which we refer the reader to for details.

Velocity Control

In this task, a target speed s∗ ∈ [0, 4.5] and direction ψ∗ ∈ [0, 2π) are randomly sampled

every 10 seconds. Defining the target velocity as v∗t = (s∗ cosψ∗, s∗ sinψ∗) and the hu-

manoid’s current velocity as vt, the reward is defined as the product of a speed factor and

direction factor:

rt = exp

(
−
(∥vt∥ − ∥v∗t ∥

η

)2
)(

1 + score(vt, v
∗
t)

2

)k
,

164

where score(vt, v
∗
t) = vt · v∗t /∥vt∥∥v∗t ∥ gives the cosine of the angle between the two

velocity vectors. In our experiments, we set η = 0.75 and k = 7. We also experimented

with the velocity error reward used by Bohez, Tunyasuvunakool, et al. (2022) but found

that our reward was easier to optimize. We terminate the episode either after 2000 time

steps (60 seconds) or if any body part other than the feet touches the ground.

Hyperparameters

Table C.3: Hyperparameters for RL transfer tasks.

Total environment steps 150 million
Environment steps per policy update 16 384

PPO epochs 10
PPO minibatch size 1024

PPO clipping parameter ε 0.2
KL divergence threshold for early stopping 0.3

Entropy bonus coefficient

General low-level policy: 1e−4
Locomotion low-level policy: 1e−3

No low-level policy: 1e−4
GAE parameter λ 0.95
Discount factor γ 0.99

Gradient norm clipping value 1
Adam step size 5e−5

Number of actors 32

Initial standard deviation for task policy
With low-level policy: 2.5

Without low-level policy: 0.5

Maximum per-element action magnitude for task policy
With low-level policy: 3

Without low-level policy: 1

Like the snippet experts, we train the task policies using the Stable-Baselines3 imple-

mentation of PPO. Each task policy is a neural network with three hidden layers, 1024

neurons per hidden layer, and the tanh activation. We ran the training on Azure Stan-

dard_ND6s (6 CPUs and 1 NVIDIA P40 GPU) VMs. We give other hyperparameters

in Table C.3.

165

Table C.4: Hyperparameters for GPT training.

Adam step size 3e−6
Minibatch size 256

Gradient norm clipping value 1
Attention dropout probability 0.1

Embedding dropout probability 0.1
Residual dropout probability 0.1

Block size 32
Embedding size 768
Attention heads 8

Number of layers 8
Weight decay 0.1

C.2.4 Motion Completion with GPT

We train a variant of minGPT (Karpathy, 2020) that we adapted to accept continuous inputs

and output continuous actions. This particular model has 57 million parameters and was

trained with a context length of 32 time steps, corresponding to roughly one second of

motion. Similar to the multi-clip policy (Section C.2.2), we sample state s(t−31):t and mean-

action ā(t−31):t sequences of length 32 from the MoCapAct dataset D. To speed up training,

we normalize the humanoid state st using the corresponding mean and standard deviation

computed over the entire dataset. We use the mean squared error loss on the sequence of

predicted actions from the GPT. We trained GPT using PyTorch Lightning (Falcon, 2019)

on Azure Standard_NC24s_v3, each equipped with 24 CPUs and 4 V100 GPUs, for 2

million steps, corresponding to one week of wall-clock time. We give the other relevant

hyperparameters in Table C.4.

The observables for the GPT policy are: joints_pos, joints_vel, sensors_velocimeter,

sensors_gyro, end_effectors_pos, world_zaxis, actuator_activation, sensors_touch,

sensors_torque, body_height. Importantly, GPT is not given any reference data from

the MoCap clip, so any motion generation was done only on the basis of the historical

context provided.

166

C.3 More Results

C.3.1 Clip Snippet Experts

Training Curves

0.0

0.2

0.4

0.6

0.8

1.0
A

vg
.

no
rm

al
iz

ed
ep

is
od

e
re

w
ar

d
R̂
c
(π
c
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Environment transitions ×108

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

.
no

rm
al

iz
ed

ep
is

od
e

le
ng

th
L̂
c
(π
c
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure C.2: Snippet expert training curves on MoCap dataset.

We give the learning curves for the experts in Fig. C.2. In particular, we plot the quan-

tiles 0, 0.1, . . . , 0.9, 1 to visualize how the distribution of experts improves over the course

of training. Overall, we see reliable improvement of the experts with convergence at about

100 million environment transitions.

Expert Performance vs. Snippet Length

Here, we study whether longer snippets are “harder” to track by the expert. Fig. C.3 shows

scatter plots of the experts’ normalized episode reward and length as a function of the snip-

pet length. Overall, the snippet length does not appear to affect the experts’ performance

as indicated by the fitted curves being relatively flat.

167

50 100 150 200 250

Snippet length (time steps)

0.2

0.4

0.6

0.8

1.0

1.2

A
ve

ra
ge

no
rm

al
iz

ed
ep

is
od

e
re

w
ar

d
R̂
c
(π

c
)

50 100 150 200 250

Snippet length (time steps)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

no
rm

al
iz

ed
ep

is
od

e
le

ng
th
L̂
c
(π

c
)

Figure C.3: Scatter plot of experts’ performance versus the snippet length. Here, the Gaus-
sian noise of the experts is disabled. The performance appears to be independent of snippet
length.

Table C.5: Clip expert results on the MoCap snippets within dm_control using the stochas-
tic πc.

Mean Standard deviation Median Minimum Maximum
Average normalized episode reward 0.689 0.092 0.690 0.179 0.876
Average normalized episode length 0.984 0.029 0.990 0.403 1.000

0.2 0.4 0.6 0.8

Average normalized episode reward R̂c(πc)

0

100

200

300

N
um

be
ro

fe
xp

er
tp

ol
ic

ie
s

0.980 0.985 0.990 0.995 1.000

Average normalized episode length L̂c(πc)

0

50

100

150

200

N
um

be
ro

fe
xp

er
tp

ol
ic

ie
s

(a) Episode rewards and lengths of the noisy experts.

0.6 0.7 0.8 0.9
Noisy-to-deterministic expert performance ratio

0

100

200

300

400

N
um

be
ro

fe
xp

er
tp

ol
ic

ie
s

(b) Performance ratio of noisy
expert to deterministic expert.

Figure C.4: Noisy expert results on the MoCap snippets within dm_control. The noisy
experts incur a small performance drop from their deterministic counterparts.

Noisy Expert Evaluations

Because the MoCapAct dataset is formed from noisy rollouts of the experts, it is sensible to

assess the performance of the experts when rolled out with noise. Table C.5 and Fig. C.4a

show that the experts still have strong performance. We point out the noisy experts on

average attain 85% of the performance of the deterministic experts (Fig. C.4b).

From the scatter plot of the noisy experts (Fig. C.5), we see a minor decrease in reward

168

50 100 150 200 250

Snippet length (time steps)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

no
rm

al
iz

ed
ep

is
od

e
re

w
ar

d
R̂
c
(π

c
)

50 100 150 200 250

Snippet length (time steps)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

no
rm

al
iz

ed
ep

is
od

e
le

ng
th
L̂
c
(π

c
)

Figure C.5: Scatter plot of noisy experts’ performance versus the snippet length. There is
a minor decrease in performance as the snippet length increases.

and episode length as the snippet gets longer. This is probably due to longer snippets giving

more time steps for the noise to destabilize the humanoid.

169

C.3.2 Multi-Clip Tracking Policy

Training Curves

50000 100000 150000 200000
Training iteration

0.62

0.64

0.66

0.68

0.70

A
ve

ra
ge

no
rm

al
iz

ed
ep

is
od

e
re

w
ar

d
R̂
c
(π

)

RWR
CWR
AWR
BC

Figure C.6: Multi-clip policy training curves on MoCap snippets.

Fig. C.6 shows the reward curves for the four weighting schemes. Overall, the reward

plateaus after about 50 000 iterations for each scheme, and reward-weighted regression

performs markedly better than the other three schemes.

Autoregressive Parameter α

50000 100000 150000 200000
Training iteration

0.65

0.66

0.67

0.68

0.69

0.70

A
ve

ra
ge

no
rm

al
iz

ed
ep

is
od

e
re

w
ar

d
R̂
c
(π

)

α = 0

α = 0.95

Figure C.7: Comparison of multi-clip policy’s performance when varying the autoregres-
sive parameter α for the prior distribution p(zt|zt−1). Here, we use the RWR-weighting
scheme. Performance is broadly similar for both values of α.

Merel, Hasenclever, et al. (2019) found that using an autoregressive parameter of α =

170

0.95 gave 50% improvement in policy performance over α = 0. Interestingly, in our exper-

iments we found that the performance gap is much smaller (Fig. C.7), with α = 0.95 only

giving 3% improvement. Accordingly, we set α = 0 for our experiments (corresponding to

a temporally independent prior of p(zt|zt−1) = N (zt; 0, I)) so that we could better control

the size of the intentions zt generated by our reference encoder.

Scatter Plots on Snippets and Clips

50 100 150 200 250

Snippet length (time steps)

0.2

0.4

0.6

0.8

1.0

1.2

A
ve

ra
ge

no
rm

al
iz

ed
ep

is
od

e
re

w
ar

d
R̂
c
(π

)

50 100 150 200 250

Snippet length (time steps)

0.4

0.6

0.8

1.0

A
ve

ra
ge

no
rm

al
iz

ed
ep

is
od

e
le

ng
th
L̂
c
(π

)

Figure C.8: Scatter plot of the multi-clip policy’s performance versus the snippet length.
Here, the Gaussian noise of the policy is disabled. Longer snippets tend to result in lower
episode lengths.

Fig. C.8 shows the scatter plot of the multi-clip policy on all of the MoCap snippets.

Compared to the noisy experts (Section C.3.1), we see a more noticeable decline in episode

length on long snippets. Intuitively, this is because longer snippets allow for more opportu-

nities for the multi-clip policy to make an episode-ending mistake. The normalized reward,

on the other hand, does not give any meaningful trends.

One appealing feature of the multi-clip policy is the ability to roll out the policy on

entire clips. This also allows us to discover whether the multi-clip policy has learned to

“stitch” together the overlapping snippets from the dataset. Fig. C.9 shows that while there

are long clips that the policy can reliably track, the overall trend is that longer clips result in

lower reward and episode length. Intuitively, many clips in the MoCap dataset correspond

to locomotion behaviors, which gives many opportunities for the multi-clip policy to make

171

102 103

Clip length (time steps)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ve

ra
ge

no
rm

al
iz

ed
ep

is
od

e
re

w
ar

d
R̂
C

(π
)

102 103

Clip length (time steps)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ve

ra
ge

no
rm

al
iz

ed
ep

is
od

e
le

ng
th
L̂
C

(π
)

Figure C.9: Scatter plot of the multi-clip policy’s performance versus the clip length. Here,
the Gaussian noise of the low-level policy is disabled. Longer clips tend to result in lower
episode rewards and lengths.

episode-terminating mistakes. Usually, these mistakes correspond to the humanoid legs

colliding or one of the feet making bad contact with the ground, both of which cause the

humanoid to fall over. The fragility on longer clips points to a shortcoming of MoCapAct:

the rollouts only cover (at most) a 6-second window. Because of this, the multi-clip policy

is not trained on states that would be encountered deep into a rollout (e.g., 30 seconds into

a rollout), which limits the multi-clip policy’s performance on many longer clips. Long

clips that have high rewards and episode lengths usually have the humanoid standing for

long periods of time while doing various arm motions. Here, the motions are much simpler

since the humanoid merely needs to maintain balance while standing still.

172

REFERENCES

Abbeel, Pieter, Adam Coates, and Andrew Y. Ng (2010). “Autonomous helicopter aero-
batics through apprenticeship learning”. In: The International Journal of Robotics Re-
search 29.13, pp. 1608–1639.

Achiam, Joshua, David Held, Aviv Tamar, and Pieter Abbeel (2017). “Constrained pol-
icy optimization”. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 22–31.

Agarwal, Ananye, Ashish Kumar, Jitendra Malik, and Deepak Pathak (2023). “Legged
locomotion in challenging terrains using egocentric vision”. In: Conference on Robot
Learning. PMLR, pp. 403–415.

Akimoto, Youhei, Yuichi Nagata, Isao Ono, and Shigenobu Kobayashi (2012). “Theoreti-
cal foundation for CMA-ES from information geometry perspective”. In: Algorithmica
64.4, pp. 698–716.

Aksan, Emre, Manuel Kaufmann, Peng Cao, and Otmar Hilliges (2021). “A Spatio-Temporal
Transformer for 3D Human Motion Prediction”. In: 2021 International Conference on
3D Vision (3DV). IEEE, pp. 565–574.

Alemi, Alexander A, Ian Fischer, Joshua V Dillon, and Kevin Murphy (2017). “Deep Vari-
ational Information Bottleneck”. In: International Conference on Learning Represen-
tations.

Alshiekh, Mohammed, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum,
and Ufuk Topcu (2018). “Safe reinforcement learning via shielding”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 32. 1.

Altman, Eitan (1999). Constrained Markov Decision Processes. Vol. 7. CRC Press.

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan
Mané (2016). “Concrete problems in AI safety”. In: arXiv preprint arXiv:1606.06565.

Amos, Brandon, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter (2018). “Dif-
ferentiable MPC for end-to-end planning and control”. In: Advances in Neural Infor-
mation Processing Systems 31.

Anderson, Greg, Abhinav Verma, Isil Dillig, and Swarat Chaudhuri (2020). “Neurosym-
bolic Reinforcement Learning with Formally Verified Exploration”. In: Advances in
Neural Information Processing Systems, pp. 6172–6183.

173

Atkeson, Christopher G and Juan Carlos Santamaria (1997). “A comparison of direct and
model-based reinforcement learning”. In: Proceedings of International Conference on
Robotics and Automation. Vol. 4. IEEE, pp. 3557–3564.

Banerjee, Arindam, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh (2005). “Clus-
tering with Bregman divergences”. In: Journal of Machine Learning Research 6.Oct,
pp. 1705–1749.

Beck, Amir and Marc Teboulle (2003). “Mirror descent and nonlinear projected subgradi-
ent methods for convex optimization”. In: Operations Research Letters 31.3, pp. 167–
175.

Bellman, Richard and John Casti (1971). “Differential quadrature and long-term integra-
tion”. In: Journal of Mathematical Analysis and Applications 34.2, pp. 235–238.

Benbrahim, Hamid and Judy A Franklin (1997). “Biped dynamic walking using reinforce-
ment learning”. In: Robotics and Autonomous Systems 22.3-4, pp. 283–302.

Berkenkamp, Felix, Matteo Turchetta, Angela Schoellig, and Andreas Krause (2017). “Safe
model-based reinforcement learning with stability guarantees”. In: Advances in Neural
Information Processing Systems, pp. 908–918.

Bertsekas, Dimitri P (2014). Constrained Optimization and Lagrange Multiplier Methods.
Academic Press.

— (2017). Dynamic Programming and Optimal Control. 4th. Vol. 1. Athena Scientific,
Belmont, MA.

Bharadhwaj, Homanga, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti,
and Animesh Garg (2021). “Conservative Safety Critics for Exploration”. In: Interna-
tional Conference on Learning Representations.

Bhardwaj, Mohak, Sanjiban Choudhury, and Byron Boots (2021). “Blending MPC & Value
Function Approximation for Efficient Reinforcement Learning”. In: International Con-
ference on Learning Representations.

Bhardwaj, Mohak, Ankur Handa, Dieter Fox, and Byron Boots (2020). “Information the-
oretic model predictive Q-learning”. In: Learning for Dynamics and Control. PMLR,
pp. 840–850.

Bhardwaj, Mohak, Balakumar Sundaralingam, Arsalan Mousavian, Nathan D Ratliff, Di-
eter Fox, Fabio Ramos, and Byron Boots (2021). “STORM: An integrated framework
for fast joint-space model-predictive control for reactive manipulation”. In: Conference
on Robot Learning. PMLR, pp. 750–759.

174

Bishop, Christopher M (2006). Pattern Recognition and Machine Learning. Springer.

Bohez, Steven, Abbas Abdolmaleki, Michael Neunert, Jonas Buchli, Nicolas Heess, and
Raia Hadsell (2019). “Value constrained model-free continuous control”. In: arXiv
preprint arXiv:1902.04623.

Bohez, Steven, Saran Tunyasuvunakool, Philemon Brakel, Fereshteh Sadeghi, Leonard
Hasenclever, Yuval Tassa, Emilio Parisotto, Jan Humplik, Tuomas Haarnoja, Roland
Hafner, Markus Wulfmeier, Michael Neunert, Ben Moran, Noah Siegel, Andrea Huber,
Francesco Romano, Nathan Batchelor, Federico Casarini, Josh Merel, Raia Hadsell,
and Nicolas Heess (2022). “Imitate and Repurpose: Learning Reusable Robot Move-
ment Skills From Human and Animal Behaviors”. In: arXiv preprint arXiv:2203.17138.

Bommasani, Rishi et al. (2021). “On the opportunities and risks of foundation models”. In:
arXiv preprint arXiv:2108.07258.

Borkar, Vivek S (2005). “An actor-critic algorithm for constrained Markov decision pro-
cesses”. In: Systems & Control Letters 54.3, pp. 207–213.

Botev, Zdravko I., Dirk P. Kroese, Reuven Y. Rubinstein, and Pierre L’Ecuyer (2013). “The
cross-entropy method for optimization”. In: Handbook of Statistics. Vol. 31. Elsevier,
pp. 35–59.

Broek, Bart van den, Wim Wiegerinck, and Hilbert Kappen (2010). “Risk sensitive path
integral control”. In: Proceedings of the 26th Conference on Uncertainty in Artificial
Intelligence (UAI 2010). AUAI Press, pp. 1–8.

Brohan, Anthony, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian
Ibarz, Brian Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Ju-
lian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine,
Yao Lu, Utsav Malla, Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Carolina
Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka Rao,
Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh
Sontakke, Autin Stone, Clayton Tan, Huong Tran, Vincent Vanhoucke, Steve Vega,
Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich
(2022). “RT-1: Robotics transformer for real-world control at scale”. In: Robotics: Sci-
ence and Systems.

Brooks, Steve, Andrew Gelman, Galin Jones, and Xiao-Li Meng (2011). Handbook of
Markov Chain Monte Carlo. CRC Press.

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

175

Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei (2020). “Language
models are few-shot learners”. In: Advances in Neural Information Processing Systems
33, pp. 1877–1901.

Buchli, Jonas, Evangelos Theodorou, Freek Stulp, and Stefan Schaal (2011). “Variable
impedance control: A reinforcement learning approach”. In: Robotics: Science and Sys-
tems.

Camacho, Eduardo F. and Carlos Bordons Alba (2013). Model Predictive Control. Springer
Science & Business Media.

Chen, Lili, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch (2021). “Decision Transformer:
Reinforcement Learning via Sequence Modeling”. In: Advances in Neural Information
Processing Systems 34.

Cheng, Ching-An, Andrey Kolobov, and Alekh Agarwal (2020). “Policy Improvement via
Imitation of Multiple Oracles”. In: Advances in Neural Information Processing Systems
33.

Cheng, Ching-An, Andrey Kolobov, and Adith Swaminathan (2021). “Heuristic-Guided
Reinforcement Learning”. In: Advances in Neural Information Processing Systems 34,
pp. 13550–13563.

Chentanez, Nuttapong, Matthias Müller, Miles Macklin, Viktor Makoviychuk, and Stefan
Jeschke (2018). “Physics-Based Motion Capture Imitation With Deep Reinforcement
Learning”. In: Proceedings of the 11th Annual International Conference on Motion,
Interaction, and Games, pp. 1–10.

Chernoff, Herman (1952). “A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations”. In: The Annals of Mathematical Statistics 23.4,
pp. 493–507.

Chow, Yinlam, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone (2017). “Risk-
constrained reinforcement learning with percentile risk criteria”. In: The Journal of Ma-
chine Learning Research 18.1, pp. 6070–6120.

Chow, Yinlam, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh (2018).
“A Lyapunov-Based Approach to Safe Reinforcement Learning”. In: Proceedings of the
32nd International Conference on Neural Information Processing Systems, pp. 8092–
8101.

176

Chow, Yinlam, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh (2019). “Lyapunov-based safe policy optimization for continuous con-
trol”. In: arXiv preprint arXiv:1901.10031.

Christiano, Paul F, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei
(2017). “Deep reinforcement learning from human preferences”. In: Advances in Neu-
ral Information Processing Systems 30.

Chua, Kurtland, Roberto Calandra, Rowan McAllister, and Sergey Levine (2018). “Deep
reinforcement learning in a handful of trials using probabilistic dynamics models”. In:
Advances in Neural Information Processing Systems, pp. 4754–4765.

Clark, Jack and Dario Amodei (2016). Faulty Reward Functions in the Wild.
openai.com/research/faulty-reward-functions.

CMU (2003). Carnegie Mellon University Graphics Lab Motion Capture Database.
http://mocap.cs.cmu.edu.

Collaboration, Open X-Embodiment et al. (2023). “Open X-Embodiment: Robotic learning
datasets and RT-X models”. In: arXiv preprint arXiv:2310.08864.

Craig, John J (2022). Introduction to Robotics: Mechanics and Control. Pearson Education,
Inc.

Dalal, Gal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and
Yuval Tassa (2018). “Safe exploration in continuous action spaces”. In: arXiv preprint
arXiv:1801.08757.

Ding, Dongsheng, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo R Jovanović
(2021). “Provably efficient safe exploration via primal-dual policy optimization”. In:
Proceedings of The 24th International Conference on Artificial Intelligence and Statis-
tics. Vol. 130, pp. 3304–3312.

Drews, Paul, Grady Williams, Brian Goldfain, Evangelos A. Theodorou, and James M.
Rehg (2019). “Vision-Based High-Speed Driving With a Deep Dynamic Observer”. In:
IEEE Robotics and Automation Letters 4.2, pp. 1564–1571.

Efroni, Yonathan, Shie Mannor, and Matteo Pirotta (2020). “Exploration-Exploitation in
Constrained MDPs”. In: arXiv preprint arXiv:2003.02189.

Erez, Tom, Kendall Lowrey, Yuval Tassa, Vikash Kumar, Svetoslav Kolev, and Emanuel
Todorov (2013). “An integrated system for real-time model predictive control of hu-
manoid robots”. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids). IEEE, pp. 292–299.

177

https://openai.com/research/faulty-reward-functions
http://mocap.cs.cmu.edu

Escontrela, Alejandro, Xue Bin Peng, Wenhao Yu, Tingnan Zhang, Atil Iscen, Ken Gold-
berg, and Pieter Abbeel (2022). “Adversarial motion priors make good substitutes for
complex reward functions”. In: 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, pp. 25–32.

Eysenbach, Benjamin, Shixiang Gu, Julian Ibarz, and Sergey Levine (2018). “Leave No
Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning”. In: In-
ternational Conference on Learning Representations.

Facchinei, Francisco and Jong-Shi Pang (2007). Finite-Dimensional Variational Inequali-
ties and Complementarity Problems. Springer Science & Business Media.

Falcon, William (2019). PyTorch Lightning. github.com/PyTorchLightning/pytorch-lightning.

Finn, Chelsea and Sergey Levine (2017). “Deep visual foresight for planning robot mo-
tion”. In: 2017 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, pp. 2786–2793.

Fisac, Jaime F, Anayo K Akametalu, Melanie N Zeilinger, Shahab Kaynama, Jeremy
Gillula, and Claire J Tomlin (2018). “A general safety framework for learning-based
control in uncertain robotic systems”. In: IEEE Transactions on Automatic Control
64.7, pp. 2737–2752.

Freeman, C. Daniel, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier
Bachem (2021). “Brax - A differentiable physics engine for large scale rigid body sim-
ulation”. In: Neural Information Processing Systems Datasets and Benchmarks Track.

Fu, Justin, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine (2020). “D4RL:
Datasets for Deep Data-Driven Reinforcement Learning”. In: arXiv preprint arXiv:2004.07219.

Fuchioka, Yuni, Zhaoming Xie, and Michiel Van de Panne (2023). “OPT-Mimic: Imitation
of optimized trajectories for dynamic quadruped behaviors”. In: IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp. 5092–5098.

Fukushima, Kunihiko (1980). “Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position”. In: Biological Cy-
bernetics 36.4, pp. 193–202.

García, Javier and Fernando Fernández (2015). “A comprehensive survey on safe reinforce-
ment learning”. In: Journal of Machine Learning Research 16.1, pp. 1437–1480.

Geibel, Peter and Fritz Wysotzki (2005). “Risk-sensitive reinforcement learning applied to
control under constraints”. In: Journal of Artificial Intelligence Research 24, pp. 81–
108.

178

https://github.com/PyTorchLightning/pytorch-lightning

Glynn, Peter W. (1990). “Likelihood ratio gradient estimation for stochastic systems”. In:
Communications of the ACM 33.10, pp. 75–84.

Goldfain, Brian, Paul Drews, Changxi You, Matthew Barulic, Orlin Velev, Panagiotis Tsio-
tras, and James M. Rehg (2019). “AutoRally: An Open Platform for Aggressive Au-
tonomous Driving”. In: IEEE Control Systems Magazine 39.1, pp. 26–55.

Gómez, Vicenç, Sep Thijssen, Andrew Symington, Stephen Hailes, and Hilbert Kappen
(2016). “Real-time stochastic optimal control for multi-agent quadrotor systems”. In:
Proceedings of the International Conference on Automated Planning and Scheduling.
Vol. 26, pp. 468–476.

Goschin, Sergiu, Ari Weinstein, and Michael Littman (2013). “The Cross-Entropy Method
Optimizes for Quantiles”. In: International Conference on Machine Learning. PMLR,
pp. 1193–1201.

Greydanus, Samuel, Misko Dzamba, and Jason Yosinski (2019). “Hamiltonian neural net-
works”. In: Advances in Neural Information Processing Systems 32.

Hall, Eric and Rebecca Willett (2013). “Dynamical models and tracking regret in online
convex programming”. In: International Conference on Machine Learning, pp. 579–
587.

Hans, Alexander, Daniel Schneegaß, Anton Maximilian Schäfer, and Steffen Udluft (2008).
“Safe exploration for reinforcement learning”. In: European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning (ESANN), pp. 143–
148.

Hansen, Nikolaus, Sibylle D. Müller, and Petros Koumoutsakos (2003). “Reducing the
Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix
Adaptation (CMA-ES)”. In: Evolutionary Computation 11.1, pp. 1–18.

Harvey, Félix G, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal (2020). “Robust
Motion In-Betweening”. In: ACM Transactions on Graphics (TOG) 39.4, pp. 60–1.

Hasenclever, Leonard, Fabio Pardo, Raia Hadsell, Nicolas Heess, and Josh Merel (2020).
“CoMic: Complementary Task Learning & Mimicry for Reusable Skills”. In: Interna-
tional Conference on Machine Learning. PMLR, pp. 4105–4115.

Hazan, Elad (2016). “Introduction to online convex optimization”. In: Foundations and
Trends® in Optimization 2.3-4, pp. 157–325.

Heess, Nicolas, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne,
Yuval Tassa, Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin Riedmiller, and David

179

Silver (2017). “Emergence of Locomotion Behaviours in Rich Environments”. In: arXiv
preprint arXiv:1707.02286.

Helvik, Bjarne E. and Otto Wittner (2002). “Using the Cross-Entropy Method to Guide/Govern
Mobile Agent’s Path Finding in Networks”. In: International Workshop on Mobile
Agents for Telecommunication Applications 2164.

Henighan, Tom, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson,
Heewoo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin
Mann, Alec Radford, Aditya Ramesh, Nick Ryder, Daniel M Ziegler, John Schulman,
Dario Amodei, and Sam McCandlish (2020). “Scaling laws for autoregressive genera-
tive modeling”. In: arXiv preprint arXiv:2010.14701.

Howell, Taylor, Nimrod Gileadi, Saran Tunyasuvunakool, Kevin Zakka, Tom Erez, and Yu-
val Tassa (2022). “Predictive sampling: Real-time behaviour synthesis with MuJoCo”.
In: arXiv preprint arXiv:2212.00541.

Ionescu, Catalin, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu (2013). “Hu-
man3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in
Natural Environments”. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence 36.7, pp. 1325–1339.

Janner, Michael, Qiyang Li, and Sergey Levine (2021). “Offline Reinforcement Learning as
One Big Sequence Modeling Problem”. In: Advances in Neural Information Processing
Systems 34.

Kakade, Sham and John Langford (2002). “Approximately optimal approximate reinforce-
ment learning”. In: International Conference on Machine Learning.

Kania, Kacper, Marek Kowalski, and Tomasz Trzciński (2021). “TrajeVAE: Controllable
Human Motion Generation from Trajectories”. In: arXiv preprint arXiv:2104.00351.

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei (2020). “Scaling laws
for neural language models”. In: arXiv preprint arXiv:2001.08361.

Karpathy, Andrej (2020). minGPT. github.com/karpathy/minGPT.

Kingma, Diederik P and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimiza-
tion”. In: International Conference on Learning Representations.

Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, Piotr Dollár, and Ross
Girschick (2023). “Segment anything”. In: arXiv preprint arXiv:2304.02643.

180

https://github.com/karpathy/minGPT

Kivinen, Jyrki and Manfred K Warmuth (1997). “Exponentiated gradient versus gradient
descent for linear predictors”. In: Information and Computation 132.1, pp. 1–63.

Kober, Jens, J Andrew Bagnell, and Jan Peters (2013). “Reinforcement learning in robotics:
A survey”. In: The International Journal of Robotics Research 32.11, pp. 1238–1274.

Kober, Jens and Jan Peters (2008). “Policy search for motor primitives in robotics”. In:
Advances in Neural Information Processing Systems 21.

Kobilarov, Marin (2012). “Cross-entropy randomized motion planning”. In: Robotics: Sci-
ence and Systems. Vol. 7, pp. 153–160.

Kormushev, Petar, Sylvain Calinon, and Darwin G Caldwell (2010). “Robot motor skill
coordination with EM-based reinforcement learning”. In: 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, pp. 3232–3237.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet classification
with deep convolutional neural networks”. In: Advances in Neural Information Pro-
cessing Systems 25.

Kumar, Ashish, Zipeng Fu, Deepak Pathak, and Jitendra Malik (2021). “RMA: Rapid motor
adaptation for legged robots”. In: Robotics: Science and Systems.

Laskey, Michael, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg (2017). “DART:
Noise Injection for Robust Imitation Learning”. In: Conference on Robot Learning.
PMLR, pp. 143–156.

Le, Hoang, Cameron Voloshin, and Yisong Yue (2019). “Batch policy learning under con-
straints”. In: International Conference on Machine Learning. PMLR, pp. 3703–3712.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: Nature
521.7553, pp. 436–444.

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner (1998). “Gradient-based
learning applied to document recognition”. In: Proceedings of the IEEE 86.11, pp. 2278–
2324.

Lee, Jason D, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I Jordan,
and Benjamin Recht (2019). “First-Order Methods Almost Always Avoid Strict Saddle
Points”. In: Mathematical Programming 176.1, pp. 311–337.

Lee, Joonho, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter
(2020). “Learning quadrupedal locomotion over challenging terrain”. In: Science Robotics
5.47.

181

Levine, Sergey, Chelsea Finn, Trevor Darrell, and Pieter Abbeel (2016). “End-to-end train-
ing of deep visuomotor policies”. In: The Journal of Machine Learning Research 17.1,
pp. 1334–1373.

Levine, Sergey, Aviral Kumar, George Tucker, and Justin Fu (2020). “Offline Reinforce-
ment Learning: Tutorial, Review, and Perspectives on Open Problems”. In: arXiv preprint
arXiv:2005.01643.

Levine, Sergey, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen (2018).
“Learning hand-eye coordination for robotic grasping with deep learning and large-
scale data collection”. In: The International Journal of Robotics Research 37.4-5, pp. 421–
436.

Li, Chenhao, Marin Vlastelica, Sebastian Blaes, Jonas Frey, Felix Grimminger, and Georg
Martius (2022). “Learning agile skills via adversarial imitation of rough partial demon-
strations”. In: Conference on Robot Learning. PMLR, pp. 342–352.

Li, Shuo and Osbert Bastani (2020). “Robust model predictive shielding for safe reinforce-
ment learning with stochastic dynamics”. In: 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 7166–7172.

Lin, Tianyi, Chi Jin, and Michael Jordan (2020). “On gradient descent ascent for nonconvex-
concave minimax problems”. In: International Conference on Machine Learning. PMLR,
pp. 6083–6093.

Liu, Siqi, Guy Lever, Zhe Wang, Josh Merel, S. M. Ali Eslami, Daniel Hennes, Woj-
ciech M. Czarnecki, Yuval Tassa, Shayegan Omidshafiei, Abbas Abdolmaleki, Noah Y.
Siegel, Leonard Hasenclever, Luke Marris, Saran Tunyasuvunakool, H. Francis Song,
Markus Wulfmeier, Paul Muller, Tuomas Haarnoja, Brendan D. Tracey, Karl Tuyls,
Thore Graepel, and Nicolas Heess (2022). “From Motor Control to Team Play in Sim-
ulated Humanoid Football”. In: Science Robotics 7.69.

Ljung, Lennart (1987). System Identification: Theory for the User. Prentice Hall.

Lowe, David G (2004). “Distinctive image features from scale-invariant keypoints”. In:
International Journal of Computer Vision 60, pp. 91–110.

Lowrey, Kendall, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mor-
datch (2019). “Plan Online, Learn Offline: Efficient Learning and Exploration via Model-
Based Control”. In: International Conference on Learning Representations.

Ma, Yecheng Jason, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh
Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar (2023). “Eureka: Human-
level reward design via coding large language models”. In: arXiv preprint arXiv:2310.12931.

182

Makoviychuk, Viktor, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State
(2021). “Isaac Gym: High Performance GPU-Based Physics Simulation For Robot
Learning”. In: Neural Information Processing Systems Datasets and Benchmarks Track.

Mannor, Shie, Reuven Y. Rubinstein, and Yohai Gat (2003). “The cross entropy method for
fast policy search”. In: Proceedings of the 20th International Conference on Machine
Learning (ICML-03), pp. 512–519.

Mao, Wei, Miaomiao Liu, Mathieu Salzmann, and Hongdong Li (2019). “Learning Trajec-
tory Dependencies for Human Motion Prediction”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9489–9497.

Margolis, Gabriel B, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal (2022).
“Rapid locomotion via reinforcement learning”. In: Robotics: Science and Systems.

Mayne, David Q. (2014). “Model predictive control: Recent developments and future promise”.
In: Automatica 50.12, pp. 2967–2986.

Menache, Ishai, Shie Mannor, and Nahum Shimkin (2005). “Basis Function Adaptation in
Temporal Difference Reinforcement Learning”. In: Annals of Operations Research 134
(1), pp. 215–238.

Merel, Josh, Arun Ahuja, Vu Pham, Saran Tunyasuvunakool, Siqi Liu, Dhruva Tirumala,
Nicolas Heess, and Greg Wayne (2019). “Hierarchical Visuomotor Control of Hu-
manoids”. In: International Conference on Learning Representations.

Merel, Josh, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne,
Yee Whye Teh, and Nicolas Heess (2019). “Neural Probabilistic Motor Primitives for
Humanoid Control”. In: International Conference on Learning Representations.

Merel, Josh, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg
Wayne, and Nicolas Heess (2017). “Learning Human Behaviors from Motion Capture
by Adversarial Imitation”. In: arXiv preprint arXiv:1707.02201.

Merel, Josh, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever, Vu
Pham, Tom Erez, Greg Wayne, and Nicolas Heess (2020). “Catch & Carry: Reusable
Neural Controllers for Vision-Guided Whole-Body Tasks”. In: ACM Transactions on
Graphics (TOG) 39.4, pp. 39–1.

Michael, Nathan, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar (2010). “The GRASP
multiple micro-UAV testbed”. In: IEEE Robotics & Automation Magazine 17.3, pp. 56–
65.

183

Mitrovic, Djordje, Stefan Klanke, and Sethu Vijayakumar (2010). “Adaptive optimal feed-
back control with learned internal dynamics models”. In: From Motor Learning to In-
teraction Learning in Robots, pp. 65–84.

Miyashita, Megumi, Shiro Yano, and Toshiyuki Kondo (2018). “Mirror descent search and
its acceleration”. In: Robotics and Autonomous Systems 106, pp. 107–116.

Morimoto, Jun and Christopher Atkeson (2002). “Minimax differential dynamic program-
ming: An application to robust biped walking”. In: Advances in Neural Information
Processing Systems 15.

Mourot, Lucas, Ludovic Hoyet, François Le Clerc, François Schnitzler, and Pierre Hel-
lier (2022). “A Survey on Deep Learning for Skeleton-Based Human Animation”. In:
Computer Graphics Forum. Vol. 41. 1. Wiley Online Library, pp. 122–157.

Murphy, Kevin P (2012). Machine Learning: A Probabilistic Perspective. MIT Press.

Nielsen, Frank and Vincent Garcia (2009). “Statistical exponential families: A digest with
flash cards”. In: arXiv preprint arXiv:0911.4863.

Okada, Masashi and Tadahiro Taniguchi (2018). “Acceleration of Gradient-based Path In-
tegral Method for Efficient Optimal and Inverse Optimal Control”. In: 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE, pp. 3013–3020.

OpenAI (2023). “GPT-4 technical report”. In: arXiv preprint arXiv:2303.08774.

Ouyang, Long, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob
Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe (2022). “Training language models to fol-
low instructions with human feedback”. In: Advances in Neural Information Processing
Systems 35, pp. 27730–27744.

Pan, Yunpeng, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos A
Theodorou, and Byron Boots (2020). “Imitation learning for agile autonomous driv-
ing”. In: The International Journal of Robotics Research 39.2-3, pp. 286–302.

Peng, Xue Bin, Pieter Abbeel, Sergey Levine, and Michiel van de Panne (2018). “Deep-
Mimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character
Skills”. In: ACM Transactions on Graphics (TOG) 37.4, pp. 1–14.

Peng, Xue Bin, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine (2019).
“MCP: Learning Composable Hierarchical Control with Multiplicative Compositional
Policies”. In: Advances in Neural Information Processing Systems 32.

184

Peng, Xue Bin, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey
Levine (2020). “Learning Agile Robotic Locomotion Skills by Imitating Animals”. In:
Robotics: Science and Systems.

Peng, Xue Bin, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler (2022). “ASE:
Large-Scale Reusable Adversarial Skill Embeddings for Physically Simulated Charac-
ters”. In: ACM Transactions On Graphics (TOG) 41.4, pp. 1–17.

Peng, Xue Bin, Aviral Kumar, Grace Zhang, and Sergey Levine (2019). “Advantage-Weighted
Regression: Simple and Scalable Off-Policy Reinforcement Learning”. In: arXiv preprint
arXiv:1910.00177.

Perkins, Theodore J and Andrew G Barto (2002). “Lyapunov design for safe reinforcement
learning”. In: Journal of Machine Learning Research 3.Dec, pp. 803–832.

Peters, Jan and Stefan Schaal (2006a). “Policy gradient methods for robotics”. In: 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 2219–
2225.

— (2006b). “Reinforcement learning for parameterized motor primitives”. In: The 2006
IEEE International Joint Conference on Neural Network Proceedings. IEEE, pp. 73–
80.

— (2007). “Reinforcement Learning by Reward-Weighted Regression for Operational Space
Control”. In: Proceedings of the 24th International Conference on Machine Learning,
pp. 745–750.

— (2008a). “Learning to control in operational space”. In: The International Journal of
Robotics Research 27.2, pp. 197–212.

— (2008b). “Reinforcement learning of motor skills with policy gradients”. In: Neural
Networks 21.4, pp. 682–697.

Pinto, Lerrel and Abhinav Gupta (2016). “Supersizing self-supervision: Learning to grasp
from 50K tries and 700 robot hours”. In: 2016 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 3406–3413.

Polo, Francisco Javier Garcia and Fernando Fernandez Rebollo (2011). “Safe reinforce-
ment learning in high-risk tasks through policy improvement”. In: 2011 IEEE Sym-
posium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL).
IEEE, pp. 76–83.

Puterman, Martin L (1994). Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons.

185

Qin, S Joe and Thomas A Badgwell (2003). “A survey of industrial model predictive con-
trol technology”. In: Control Engineering Practice 11.7, pp. 733–764.

Qiu, Shuang, Xiaohan Wei, Zhuoran Yang, Jieping Ye, and Zhaoran Wang (2020). “Upper
Confidence Primal-Dual Reinforcement Learning for CMDP with Adversarial Loss”.
In: Advances in Neural Information Processing Systems 33.

Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever (2018). “Improving
language understanding by generative pre-training”. In: OpenAI Blog.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever
(2019). “Language models are unsupervised multitask learners”. In: OpenAI Blog.

Raffin, Antonin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and
Noah Dormann (2021). “Stable-Baselines3: Reliable Reinforcement Learning Imple-
mentations”. In: Journal of Machine Learning Research.

Rattray, Magnus, David Saad, and Shun-ichi Amari (1998). “Natural gradient descent for
on-line learning”. In: Physical Review Letters 81.24, p. 5461.

Reed, Scott, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov,
Gabriel Barth-maron, Mai Giménez, Yury Sulsky, Jackie Kay, Jost Tobias Springen-
berg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian
Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas (2022). “A
generalist agent”. In: Transactions on Machine Learning Research.

Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell (2011). “A reduction of imitation
learning and structured prediction to no-regret online learning”. In: International Con-
ference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Pro-
ceedings, pp. 627–635.

Roy, Nicholas, Ingmar Posner, Tim Barfoot, Philippe Beaudoin, Yoshua Bengio, Jeannette
Bohg, Oliver Brock, Isabelle Depatie, Dieter Fox, Dan Koditschek, Tomás Lozano-
Pérez, Vikash Mansinghka, Christopher Pal, Blake Richards, Dorsa Sadigh, Stefan
Schaal, Gaurav Sukhatme, Denis Thérien, Marc Toussaint, and Michiel van de Panne
(2021). “From machine learning to robotics: Challenges and opportunities for embod-
ied intelligence”. In: arXiv preprint arXiv:2110.15245.

Rudin, Nikita, David Hoeller, Philipp Reist, and Marco Hutter (2022). “Learning to walk
in minutes using massively parallel deep reinforcement learning”. In: Conference on
Robot Learning. PMLR, pp. 91–100.

Schaal, Stefan (1996). “Learning from demonstration”. In: Advances in Neural Information
Processing Systems 9.

186

Schulman, John, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel (2016).
“High-Dimensional Continuous Control Using Generalized Advantage Estimation”. In:
International Conference on Learning Representations.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov (2017).
“Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347.

Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua (2016). “Safe, multi-agent
reinforcement learning for autonomous driving”. In: arXiv preprint arXiv:1610.03295.

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis
Hassabis (2016). “Mastering the game of Go with deep neural networks and tree search”.
In: Nature 529.7587, pp. 484–489.

Smith, Laura, J Chase Kew, Xue Bin Peng, Sehoon Ha, Jie Tan, and Sergey Levine (2022).
“Legged robots that keep on learning: Fine-tuning locomotion policies in the real world”.
In: International Conference on Robotics and Automation (ICRA). IEEE, pp. 1593–
1599.

Srinivas, Aravind, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn (2018).
“Universal planning networks: Learning generalizable representations for visuomotor
control”. In: International Conference on Machine Learning. PMLR, pp. 4732–4741.

Srinivasan, Krishnan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn (2020).
“Learning to be Safe: Deep RL with a Safety Critic”. In: arXiv preprint arXiv:2010.14603.

Stachowicz, Kyle, Dhruv Shah, Arjun Bhorkar, Ilya Kostrikov, and Sergey Levine (2023).
“FastRLAP: A system for learning High-speed driving via deep RL and autonomous
practicing”. In: Conference on Robot Learning.

Stulp, Freek, Evangelos A Theodorou, and Stefan Schaal (2012). “Reinforcement learning
with sequences of motion primitives for robust manipulation”. In: IEEE Transactions
on Robotics 28.6, pp. 1360–1370.

Sünderhauf, Niko, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jürgen Leit-
ner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford, and Peter Corke
(2018). “The limits and potentials of deep learning for robotics”. In: The International
Journal of Robotics Research 37.4-5, pp. 405–420.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement Learning: An Introduction.
MIT Press.

187

Szita, István and András Lörincz (2006). “Learning Tetris using the noisy cross-entropy
method”. In: Neural Computation 18.12, pp. 2936–2941.

Tamar, Aviv, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel (2016). “Value
iteration networks”. In: Advances in Neural Information Processing Systems 29.

Tassa, Yuval, Nicolas Mansard, and Emo Todorov (2014). “Control-limited differential dy-
namic programming”. In: 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, pp. 1168–1175.

Tessler, Chen, Daniel J Mankowitz, and Shie Mannor (2018). “Reward Constrained Policy
Optimization”. In: International Conference on Learning Representations.

Tevet, Guy, Brian Gordon, Amir Hertz, Amit H Bermano, and Daniel Cohen-Or (2022).
“MotionCLIP: Exposing Human Motion Generation to CLIP Space”. In: European
Conference on Computer Vision. Springer.

Thananjeyan, Brijen, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srinivasan,
Minho Hwang, Joseph E Gonzalez, Julian Ibarz, Chelsea Finn, and Ken Goldberg
(2021). “Recovery RL: Safe Reinforcement Learning with Learned Recovery Zones”.
In: IEEE Robotics and Automation Letters 6.3, pp. 4915–4922.

Theodorou, Evangelos, Jonas Buchli, and Stefan Schaal (2010). “A generalized path inte-
gral control approach to reinforcement learning”. In: The Journal of Machine Learning
Research 11, pp. 3137–3181.

Theodorou, Evangelos A (2015). “Nonlinear stochastic control and information theoretic
dualities: Connections, interdependencies, and thermodynamic interpretations”. In: En-
tropy 17.5, pp. 3352–3375.

Theodorou, Evangelos A and Emanuel Todorov (2012). “Relative entropy and free energy
dualities: Connections to path integral and KL control”. In: 2012 IEEE 51st Conference
on Decision and Control (CDC). IEEE, pp. 1466–1473.

Tieleman, Tijmen and Geoffrey Hinton (2012). “Lecture 6.5 — RMSprop: Divide the gra-
dient by a running average of its recent magnitude”. COURSERA: Neural Networks
for Machine Learning.

Todorov, Emanuel (2006). “Linearly-solvable Markov decision problems”. In: Advances in
Neural Information Processing Systems 19.

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “MuJoCo: A Physics Engine for
Model-Based Control”. In: 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, pp. 5026–5033.

188

Tunyasuvunakool, Saran, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh
Merel, Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa (2020). “dm_control:
Software and Tasks for Continuous Control”. In: Software Impacts 6, p. 100022.

Turchetta, Matteo, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal
(2020). “Safe Reinforcement Learning via Curriculum Induction”. In: Advances in Neu-
ral Information Processing Systems 33.

Urmson, Chris, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner, MN
Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, Michele Gittleman,
Sam Harbaugh, Martial Hebert, Thomas M Howard, Sascha Kolski, Alonzo Kelly,
Maxim Likhachev, Matt McNaughton, Nick Miller, Kevin Peterson, Brian Pilnick, Raj
Rajkumar, Paul Rybski, Bryan Salesky, Young-Woo Seo, Sanjiv Singh, Jarrod Snider,
Anthony Stentz, William Whittaker, Ziv Wolkowicki, Jason Ziglar, Hong Bae, Thomas
Brown, Daniel Demitrish, Bakhtiar Litkouhi, Jim Nickolaou, Varsha Sadekar, Wende
Zhang, Joshua Struble, Michael Taylor, Michael Darms, and Dave Ferguson (2008).
“Autonomous driving in urban environments: Boss and the Urban Challenge”. In: Jour-
nal of Field Robotics 25.8, pp. 425–466.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin (2017). “Attention is all you need”. In:
Advances in Neural Information Processing Systems, pp. 5998–6008.

Venkatraman, Arun, Martial Hebert, and J Andrew Bagnell (2015). “Improving multi-step
prediction of learned time series models”. In: Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence.

Wabersich, Kim Peter and Melanie N Zeilinger (2021). “A predictive safety filter for
learning-based control of constrained nonlinear dynamical systems”. In: Automatica
129, p. 109597.

Wainwright, Martin J and Michael I Jordan (2008). “Graphical models, exponential fam-
ilies, and variational inference”. In: Foundations and Trends® in Machine Learning
1.1–2, pp. 1–305.

Wang, Borui, Ehsan Adeli, Hsu-kuang Chiu, De-An Huang, and Juan Carlos Niebles (2019).
“Imitation Learning for Human Pose Prediction”. In: Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pp. 7124–7133.

Wang, Yikai, Zheyuan Jiang, and Jianyu Chen (2023). “Learning robust, agile, natural
legged locomotion skills in the wild”. In: arXiv preprint arXiv:2304.10888.

Wang, Ziyu, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas
Heess (2017). “Robust Imitation of Diverse Behaviors”. In: Advances in Neural Infor-
mation Processing Systems 30.

189

Wierstra, Daan, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmid-
huber (2014). “Natural evolution strategies”. In: The Journal of Machine Learning Re-
search 15.1, pp. 949–980.

Williams, Grady, Andrew Aldrich, and Evangelos A Theodorou (2017). “Model predictive
path integral control: From theory to parallel computation”. In: Journal of Guidance,
Control, and Dynamics 40.2, pp. 344–357.

Williams, Grady, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos A. Theodorou
(2016). “Aggressive driving with model predictive path integral control”. In: 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, pp. 1433–1440.

— (2018). “Information-Theoretic Model Predictive Control: Theory and Applications to
Autonomous Driving”. In: IEEE Transactions on Robotics 34.6, pp. 1603–1622.

Williams, Grady, Brian Goldfain, Paul Drews, Kamil Saigol, James M. Rehg, and Evange-
los A. Theodorou (2018). “Robust sampling based model predictive control with sparse
objective information”. In: Robotics: Science and Systems.

Williams, Grady, Nolan Wagener, Brian Goldfain, Paul Drews, James M. Rehg, Byron
Boots, and Evangelos A. Theodorou (2017). “Information theoretic MPC for model-
based reinforcement learning”. In: 2017 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, pp. 1714–1721.

Yang, Yuxiang, Ken Caluwaerts, Atil Iscen, Tingnan Zhang, Jie Tan, and Vikas Sindhwani
(2020). “Data efficient reinforcement learning for legged robots”. In: Conference on
Robot Learning. PMLR, pp. 1–10.

Yuan, Ye and Kris Kitani (2020). “Residual Force Control for Agile Human Behavior Imi-
tation and Extended Motion Synthesis”. In: Advances in Neural Information Processing
Systems 33, pp. 21763–21774.

Zhang, Lijun, Shiyin Lu, and Zhi-Hua Zhou (2018). “Adaptive Online Learning in Dynamic
Environments”. In: Advances in Neural Information Processing Systems, pp. 1323–
1333.

Zhang, Wei, Han Wang, Carsten Hartmann, Marcus Weber, and Christof Schütte (2014).
“Applications of the cross-entropy method to importance sampling and optimal control
of diffusions”. In: SIAM Journal on Scientific Computing 36.6, A2654–A2672.

Zhuang, Ziwen, Zipeng Fu, Jianren Wang, Christopher G Atkeson, Sören Schwertfeger,
Chelsea Finn, and Hang Zhao (2023). “Robot Parkour Learning”. In: Conference on
Robot Learning.

190

Zitkovich, Brianna, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul
Wohlhart, Stefan Welker, Ayzaan Wahid, Quan Vuong, Vincent Vanhoucke, Huong
Tran, Radu Soricut, Anikait Singh, Jaspiar Singh, Pierre Sermanet, Pannag R San-
keti, Grecia Salazar, Michael S Ryoo, Krista Reymann, Kanishka Rao, Karl Pertsch,
Igor Mordatch, Henryk Michalewski, Yao Lu, Sergey Levine, Lisa Lee, Tsang-Wei Ed-
ward Lee, Isabel Leal, Yuheng Kuang, Dmitry Kalashnikov, Ryan Julian, Nikhil J Joshi,
Alex Irpan, brian ichter, Jasmine Hsu, Alexander Herzog, Karol Hausman, Keerthana
Gopalakrishnan, Chuyuan Fu, Pete Florence, Chelsea Finn, Kumar Avinava Dubey,
Danny Driess, Tianli Ding, Krzysztof Marcin Choromanski, Xi Chen, Yevgen Chebo-
tar, Justice Carbajal, Noah Brown, Anthony Brohan, Montserrat Gonzalez Arenas, and
Kehang Han (2023). “RT-2: Vision-language-action models transfer web knowledge to
robotic control”. In: Conference on Robot Learning.

191

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	2 | Preliminaries
	Markov Decision Processes
	Concepts Related to Probability

	I Model Predictive Control
	3 | Preliminaries
	4 | Information-Theoretic Model Predictive Control for Model-Based Reinforcement Learning
	Introduction
	Model Predictive Control
	Information-Theoretic Control
	MPC with Neural Network Dynamics
	Experimental Results
	Conclusion

	5 | An Online Learning Approach to Model Predictive Control
	Introduction
	An Online Learning Perspective on MPC
	A Family of MPC Algorithms Based on Dynamic Mirror Descent
	Related Work
	Experiments
	Conclusion

	II Reinforcement Learning
	6 | Preliminaries
	Proximal Policy Optimization (PPO)
	Chance-Constrained Markov Decision Processes

	7 | Safe Reinforcement Learning Using Advantage-Based Intervention
	Introduction
	Preliminaries
	Method
	Related Work
	Experiments
	Conclusion

	8 | MoCapAct: A Multi-Task Dataset for Simulated Humanoid Control
	Introduction
	Related Work
	The dm`control Humanoid Environment
	MoCapAct Dataset
	Applications
	Discussion

	9 | Discussion
	Appendices
	A | System Descriptions for Part I
	Cartpole
	Quadrotor
	AutoRally

	B | Safe Reinforcement Learning Using Advantage-Based Intervention
	Missing Proofs
	Additional Discussion of SAILR
	Experimental Details
	Ablations for Point Robot
	Varying Intervention Penalty for Half-Cheetah

	C | MoCapAct: A Multi-Task Dataset for Simulated Humanoid Control
	Dataset Documentation
	Training Details
	More Results

	References

